A collocation method for boundary value problems. (English) Zbl 0221.65129


65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
34A30 Linear ordinary differential equations and systems
65L10 Numerical solution of boundary value problems involving ordinary differential equations
Full Text: DOI EuDML


[1] Ahlberg, J. H., Nilson, E. N., Walsh, J. L.: The theory of splines and their applications. New York: Academic Press 1967 · Zbl 0158.15901
[2] Bailey, P. B., Shampine, L. F., Waltman, P. E.: Nonlinear two-point boundary value problems. New York: Academic Press 1968. · Zbl 0169.10502
[3] Bellman, R. E., Kalaba, R. E.: Quasilinearization and nonlinear boundary-value problems. New York: Elsevier 1965. · Zbl 0139.10702
[4] Bramble, J. H., Hubbard, B. E.: On a finite difference analogue of an elliptic boundary problem which is neither diagonally dominant nor of nonnegative type. J. Math. and Phys.43, 117-132 (1964). · Zbl 0126.32305
[5] Carrier, G. F.: Singular perturbation theory and geophysics. SIAM Review12, 175-193 (1970). · doi:10.1137/1012041
[6] Ciarlet, P. G., Schultz, M. H., Varga, R. S.: Numerical methods of high-order accuracy for nonlinear boundary value problems?I. one dimensional problem. Numer. Math.9, 394-430 (1967). · Zbl 0155.20403 · doi:10.1007/BF02162155
[7] Collatz, L.: Functional analysis and numerical mathematics, trans. by H. J. Oser. New York: Academic Press 1966. · Zbl 0148.39002
[8] ?: The numerical treatment of differential equations, 3rd ed. Berlin-Göttingen-Heidelberg: Springer 1960. · Zbl 0086.32601
[9] Conte, S. D.: The numerical solution of linear boundary value problems. SIAM Review8, 309-321 (1966). · Zbl 0168.14101 · doi:10.1137/1008063
[10] Davis, H. T.: Introduction to nonlinear differential and integral equations. New York: Dover 1962. · Zbl 0106.28904
[11] Davis, P. J., Rabinowitz, P.: Numerical integration. Waltham, Mass.: Blaisdell 1967. · Zbl 0154.17802
[12] De Boor, C.: The method of projections as applied to the numerical solution of two point boundary value problems using cubic splines. Dissertation, University of Michigan, Ann Arbor, Michigan, 1966.
[13] Henrici, P.: Discrete variable methods in ordinary differential equations. New York: Wiley 1964. · Zbl 0112.34901
[14] Kantorovich, L. V., Akilov, G. P.: Functional analysis in normed spaces. New York: Pergamon 1964. · Zbl 0127.06104
[15] Keller, H. B.: Accurate difference methods for linear ordinary differential systems subject to linear constraints. SIAM J. Numer. Anal.6, 8-30 (1969). · Zbl 0176.14801 · doi:10.1137/0706002
[16] ?: Numerical methods for two-point boundary value problems. Waltham, Mass: Blaisdell 1968. · Zbl 0172.19503
[17] Krasnosel’skii, M. A.: Topological methods in the theory of nonlinear integral equations. Oxford, England: Pergamon 1964.
[18] Lees, M.: Discrete methods for nonlinear two-point boundary value problems, in Numerical solution of partial differential equations, ed. by, J. H. Bramble, New York: Academic Press 1966. · Zbl 0148.39206
[19] Luttman, F. W., Rivlin, T. J.: Some numerical experiments in the theory of polynomial interpolation. IBM J. Res. Develop.9, 187-191 (1965). · doi:10.1147/rd.93.0187
[20] Naimark, M. A.: Linear differential equations, Part I. English trans. by E. R. Dawson, ed. by W. N. Everitt. New York: Ungar 1967. · Zbl 0219.34001
[21] Ortega, J. M., Rheinboldt, W. C.: Iterative solution of nonlinear equations in several variables. New York: Academic Press 1970. · Zbl 0241.65046
[22] Rivlin, T. J.: An introduction to the approximation of functions. Waltham, Mass: Blaisdell 1969. · Zbl 0189.06601
[23] Roark, A. L., Shampine, L. F.: On the numerical solution of a linear two-point boundary value problem, Sandia Laboratory Technical Memorandum SC-TM-67-588. Albuquerque, New Mexico, 1967.
[24] Shampine, L. F.: Boundary value problems for ordinary differential equations. SIAM J. Numer. Anal.5, 219-242 (1968). · Zbl 0165.18002 · doi:10.1137/0705019
[25] ?: Boundary value problems for ordinary differential equations II: Patch bases and monotone methods. SIAM J. Numer. Anal.6, 414-431 (1969). · Zbl 0185.41303 · doi:10.1137/0706037
[26] Shindler, A. A.: Some theorems of the general theory of approximate methods of analysis and their application to the collocation moments and Galerkin methods. Sibirskii Mathematicheskii Zhurnal8, 415-432 (1967). · Zbl 0155.19601
[27] ?: Rate of convergence of the enriched collocation method for ordinary differential equations. Sibirskii Mathematicheskii Zhurnal10, 229-233 (1969).
[28] Timoshenko, S., Woinowsky-Krieger, S.: Theory of plates and shells. New York: McGraw-Hill 1959. · Zbl 0114.40801
[29] Urabe, M.: Numerical solution of multi-point boundary value problems in Chebyshev series ? theory of the method. Numer. Math.9, 341-366 (1967). · Zbl 0168.14005 · doi:10.1007/BF02162424
[30] ? Reiter, A.: Numerical computation of nonlinear forced oscillations by Galerkin’s procedure. J. Math. Ann. and Appl.14, 107-140 (1966). · Zbl 0196.49405 · doi:10.1016/0022-247X(66)90066-7
[31] Vainniko, G. M.: On the stability and convergence of the collocation method. Differentsial’nye Uravneniya1, 244-254 (1965).
[32] ?: On convergence of the collocation method for nonlinear differential equations. USSR Comp. Math. and Math. Phys.6, 35-42 (1966). · Zbl 0154.17301 · doi:10.1016/0041-5553(66)90160-1
[33] Wilkinson, J. H.: The algebraic eigenvalue problem. London: Oxford University Press 1965. · Zbl 0258.65037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.