Strang, Gilbert Approximation in the finite element method. (English) Zbl 0221.65174 Numer. Math. 19, 81-98 (1972). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 75 Documents MSC: 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs 65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems 65N99 Numerical methods for partial differential equations, boundary value problems PDFBibTeX XMLCite \textit{G. Strang}, Numer. Math. 19, 81--98 (1972; Zbl 0221.65174) Full Text: DOI EuDML References: [1] Bramble, J.: Variational methods for the numerical solution of linear problems. Lecture notes, Chalmers Inst. of Techn., 1970. [2] Bramble, J., Hilbert, S. H.: Estimation of linear functionals on Sobolev spaces. SIAM Num. Anal.7, 112-124 (1970). · Zbl 0201.07803 · doi:10.1137/0707006 [3] Bramble, J., Hilbert, S. H.: Bounds for a class of linear functionals with applications to Hermite interpolation. Num. Math.16, 362-369 (1971). · Zbl 0214.41405 · doi:10.1007/BF02165007 [4] Bramble, J., Zlámal, M.: Triangular elements in the finite element method. Math. Comp.24, 809-820 (1970). · Zbl 0226.65073 · doi:10.1090/S0025-5718-1970-0282540-0 [5] Ciarlet, P., Raviart, P.: General Lagrange and Hermite interpolation inR n with applications to finite element methods. Arch. Rat. Mech. Anal., to appear. · Zbl 0243.41004 [6] Ne?as, J.: Les méthodes directes en théorie des équations elliptiques. Paris: Masson 1967. [7] Nitsche, J.: Ein Kriterium für die quasi-Optimalität des Ritzschen Verfahrens. Num. Math.11, 346-348 (1968). · Zbl 0175.45801 · doi:10.1007/BF02166687 [8] Nitsche, J.: A projection method for Dirichlet problems using subspaces with nearly zero boundary conditions. Unpublished manuscript. · Zbl 0271.65059 [9] Strang, G.: The finite element method and approximation theory. Numerical solutions of partial differential equations II (SYNSPADE), ed. by Hubbard. New York: Academic Press 1971. [10] Strang, G., Berger, A.: The change in solution due to change in domain. Unpublished manuscript, submitted to Proceedings of the A.M.S. Summer Institute on Partial Differential Equations, Berkeley, 1971. · Zbl 0259.35020 [11] Strang, G., Fix, G.: An analysis of the finite element method. To be published by Prentice-Hall. · Zbl 0356.65096 [12] ?eni?ek, A.: Konvergence methody Kone?ných prvk? pro okrajove problemy Systému eliptických rovnic. Apl. Matem.14, 355-377 (1969). [13] Zienkiewicz, O. C., Cheung, Y. K.: The finite element method in structural and continum mechanics. New York: McGraw-Hill 1967. · Zbl 0189.24902 [14] Zlámal, M.: On the finite element method. Num. Math.12, 394-409 (1968). · Zbl 0176.16001 · doi:10.1007/BF02161362 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.