Zur Darstellung definiter Funktionen als Summe von Quadraten. (To the representation of definite functions as the sum of squares). (German) Zbl 0222.10022


11E25 Sums of squares and representations by other particular quadratic forms
11R58 Arithmetic theory of algebraic function fields
Full Text: DOI EuDML


[1] Artin, E.: Über die Zerlegung definiter Funktionen in Quadrate. Hamb. Abh.5, 100-115 (1927) =Collected Papers 273-288. · doi:10.1007/BF02952513
[2] Ax, J.: On ternary definite rational functions. (To appear in Proc. London Math. Soc.) · Zbl 0266.14018
[3] Cassels, J. W. S.: On the representation of rational functions as sums of squares. Acta Arithm.9, 79-82 (1964). · Zbl 0131.25001
[4] Hilbert, D.: Über die Darstellung definiter Formen als Summe von Formenquadraten. Math. Ann.32, 342-350 (1888) =Ges. Abh. II, 154-161. · doi:10.1007/BF01443605
[5] ?: Über ternäre definite Formen. Acta Math.17, 169-197 (1993) =Ges. Abh. II, 345-366. · doi:10.1007/BF02391990
[6] Hilbert, D. Mathematische Probleme. Göttinger Nachr. 1900, 253-297 =Ges. Abh. III, 290-329.
[7] Landau, E.: Über die Darstellung definiter Funktionen durch Quadrate. Math. Ann.62, 272-285 (1906). · doi:10.1007/BF01449981
[8] Lang, S.: On quasi-algebraic closure. Ann. of Math.55, 373-390 (1952). · Zbl 0046.26202 · doi:10.2307/1969785
[9] ? The theory of real places. Ann. of Math.57, 378-391 (1953). · Zbl 0052.03301 · doi:10.2307/1969865
[10] Pfister, A.: Darstellung von ? 1 als Summe von Quadraten in einem Körper. London J. of Math.40, 159-165 (1965). · Zbl 0131.25002 · doi:10.1112/jlms/s1-40.1.159
[11] Pfister, A.: Multiplikative quadratische Formen. Arch. Math.16, 363-370 (1965). · Zbl 0146.26001 · doi:10.1007/BF01220043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.