×

zbMATH — the first resource for mathematics

On Azumaya algebras and finite dimensional representations of rings. (English) Zbl 0222.16007

MSC:
16H05 Separable algebras (e.g., quaternion algebras, Azumaya algebras, etc.)
16R20 Semiprime p.i. rings, rings embeddable in matrices over commutative rings
16R10 \(T\)-ideals, identities, varieties of associative rings and algebras
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Amitsur, S.A; Levitski, J, Minimal identities for algebras, (), 449-463 · Zbl 0040.01101
[2] Artin, M, Commutative rings, () · Zbl 0402.16018
[3] Bourbaki, N, Algèbre commutative, (1961), Hermann Paris, Ch. I, II · Zbl 0108.04002
[4] Grace, J.H; Young, A, The algebra of invariants, (1903), Cambridge · JFM 34.0114.01
[5] Grothendieck, A, Séminaire de géométrie algébrique, () · Zbl 1079.14001
[6] Herstein, I.N, Topics in ring theory, () · Zbl 0232.16001
[7] Hilbert, D, Über die vollen invariantensysteme, Math. ann., 42, 313-373, (1893) · JFM 25.0173.01
[8] Jacobson, N, Structure of rings, () · JFM 65.1131.01
[9] Kaplansky, I, Rings with a polynomial identity, Bull. am. math. soc., 54, 575-580, (1948) · Zbl 0032.00701
[10] Kirillov, A.A, O heкoтopыч Aлгeбpaч c дeлehиeм HAд пoлeм paциoиAлыч фyhкций, ФyhкциohaльHый AHAлиз, 1, 101-102, (1967)
[11] Mumford, D, Geometric invariant theory, (1965), Springer Berlin · Zbl 0147.39304
[12] Posner, E.C, Prime rings satisfying a polynomial identity, (), 180-183 · Zbl 0215.38101
[13] Procesi, C, On rings with polynomial identities, (), To appear · Zbl 0148.01804
[14] Procesi, C, Noncommutative affine rings, atti accad. naz. lined, ser VIII,, 8, 239-255, (1967) · Zbl 0204.04802
[15] Tomiyama, J; Takesaki, M, Applications of fibre bundles to a certain class of \(C∗\)-algebras, Tohoku math. J., 13, 498-522, (1961) · Zbl 0113.09701
[16] Vasil’ev, N.B, \(C∗\)-algebras with finite dimensional irreducible representations, Russian math. surveys, 21, 137-155, (1966) · Zbl 0178.16702
[17] Weyl, H, The classical groups, (1946), Princeton · JFM 65.0058.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.