×

Cohomologies of Lie algebra of vector fields with nontrivial coefficients. (English. Russian original) Zbl 0222.58001

Funct. Anal. Appl. 4, 181-192 (1970); translation from Funkts. Anal. Prilozh. 4, No. 3, 10-25 (1970).

MSC:

57R32 Classifying spaces for foliations; Gelfand-Fuks cohomology
17B56 Cohomology of Lie (super)algebras
17B66 Lie algebras of vector fields and related (super) algebras
PDF BibTeX XML Cite
Full Text: DOI MNR

References:

[1] I. M. Gel’fand and D. B. Fuks, ”Cohomologies of Lie algebra of tangential vector fields of a smooth manifold,” Funktsional’. Analiz i Ego Prilozhen.,3, No. 3, 32-52 (1969).
[2] I. M. Gel’fand and D. B. Fuks, ”Cohomologies of Lie algebra of tangential vector fields of a smooth manifold. II,” Funktsional’. Analiz i Ego Prilozhen.,4, No. 2, 23-31 (1970).
[3] I. M. Gel’fand and D. B. Fuks, ”Cohomologies of Lie algebra of formal vector fields,” Izv. AN SSSR, seriya matem.,34, No. 2, 322-337 (1970).
[4] M. V. Losik, ”On the cohomologies of infinite dimensional Lie algebras of formal vector fields,” Funktsional’. Analiz i Ego Prilozhen.,4, No. 2, 43-53 (1970).
[5] H. Cartan and S. Eilenberg, Cohomological Algebra [Russian translation], IL, Moscow (1960).
[6] J. P. Serre and C. Hochshild, Cohomology of group extensions, Trans. Amer. Math. Soc.,74 (1953), 110-134. · Zbl 0050.02104
[7] D. B. Fuks, ”Spectral Sequences of Fibers,” Uspekhi Matem. Nauk,21, No. 5, 149-181 (1966).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.