zbMATH — the first resource for mathematics

Brownian directed polymers in random environment. (English) Zbl 1128.60089
Summary: We study the thermodynamics of a continuous model of directed polymers in random environment. The environment is given by a space-time Poisson point process, whereas the polymer is defined in terms of the Brownian motion. We mainly discuss: (i) The normalized partition function, its positivity in the limit which characterizes the phase diagram of the model. (ii) The existence of quenched Lyapunov exponent, its positivity, and its agreement with the annealed Lyapunov exponent; (iii) The longitudinal fluctuation of the free energy, some of its relations with the overlap between replicas and with the transversal fluctuation of the path.
The model considered here, enables us to use stochastic calculus, with respect to both Brownian motion and Poisson process, leading to handy formulas for fluctuations analysis and qualitative properties of the phase diagram. We also relate our model to some formulation of the Kardar-Parisi-Zhang equation, more precisely, the stochastic heat equation. Our fluctuation results are interpreted as bounds on various exponents and provide a circumstantial evidence of super-diffusivity in dimension one. We also obtain an almost sure large deviation principle for the polymer measure.

60K37 Processes in random environments
60H05 Stochastic integrals
60J65 Brownian motion
82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
Full Text: DOI
[1] Bertini, L., Giacomin, G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183, 571-607 (1997) · Zbl 0874.60059 · doi:10.1007/s002200050044
[2] Birman, M.?., Solomjak, M. Z.: Piecewise polynomial approximations of functions of classes Wp?. (Russian) Mat. Sb. (N.S.) 73(115), 331-355 (1967) English translation: Math. USSR-Sb. 2, 295-317 (1967) · Zbl 0173.16001
[3] Bolthausen, E.: A note on diffusion of directed polymers in a random environment. Commun. Math. Phys. 123, 529-534 (1989) · Zbl 0684.60013 · doi:10.1007/BF01218584
[4] Borodin, A.N., Salminen, P.: Handbook of Brownian Motion?Facts and Formulae. 2nd Ed., Basel-Boston-Berlin: Birkhäuser Verlag 2002 · Zbl 1012.60003
[5] Carmona, P., Hu Y.: On the partition function of a directed polymer in a random environment. Probab. Theory Related Fields 124, 431-457 (2002) · Zbl 1015.60100 · doi:10.1007/s004400200213
[6] Comets, F.: The martingale method for mean-field disordered systems at high temperature. In: Mathematical aspects of spin glasses and neural networks, Progr. Probab. 41, Birkhäuser, Boston: 1998 pp. 91-113, · Zbl 0896.60080
[7] Comets, F., Shiga, T., Yoshida, N.: Directed Polymers in Random Environment: Path Localization and Strong Disorder. Bernoulli 9, 705-723 (2003) · Zbl 1042.60069 · doi:10.3150/bj/1066223275
[8] Dembo, A., Zeitouni, O.: Large Deviation Techniques and Applications. 2nd Ed. Berlin-Heidelberg- New York: Springer Verlag, 1998. · Zbl 0896.60013
[9] Derrida, B., Spohn, H.: Polymers on disordered trees, spin glasses, and traveling waves. J. Statist. Phys. 51, 817-840 (1988) · Zbl 1036.82522 · doi:10.1007/BF01014886
[10] Durrett, R.: Probability-Theory and Examples. 2nd Ed., Pacific Grove, CA: Duxbury Press, 1995 · Zbl 1202.60001
[11] Fisher, D.S., Huse, D.A.: Directed paths in random potential. Phys. Rev. B 43, 10,728-10,742 (1991)
[12] Goodman, V., Kuelbs, J.: Rates of clustering in Strassen?s LIL for Brownian motion. J. Theoret. Probab. 4, 285-309 (1991) · Zbl 0724.60034 · doi:10.1007/BF01258738
[13] Huse, D.A., Henley, C.L.: Pinning and roughening of domain wall in Ising systems due to random impurities. Phys. Rev. Lett. 54, 2708-2711 (1985) · doi:10.1103/PhysRevLett.54.2708
[14] Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes (2nd ed.), Amsterdam / Kodansha,Tokyo: North-Holland, 1989 · Zbl 0684.60040
[15] Imbrie, J.Z., Spencer, T.: Diffusion of directed polymer in a random environment. J. Stat. Phys. 52(3-4), 609-626 (1998) · Zbl 1084.82595
[16] Kardar, M., Parisi, G., Zhang, Y.-C.: Dynamical scaling of growing interfaces. Phys. Rev. Lett. 56, 889-892 (1986) · Zbl 1101.82329 · doi:10.1103/PhysRevLett.56.889
[17] Kesten, H.: Aspect of first passage percolation. In: École d?Éte de Probabilités de Saint-Flour XIV, Springer Lecture Notes in Mathematics 1180, Berlin-Heidelberg-New York, 1986, pp. 126-263
[18] Krug, H., Spohn, H.: Kinetic roughening of growing surfaces. In: Solids Far from Equilibrium, C. Godrèche, ed., Cambridge: Cambridge University Press, 1991
[19] Licea, C., Newman, C., Piza, M.: Superdiffusivity in first-passage percolation. Probab. Theory Related Fields 106(4), 559-591 (1996) · Zbl 0870.60096 · doi:10.1007/s004400050075
[20] Mejane, O.: Upper bound of a volume exponent for directed polymers in a random environment. Ann. Inst. H. Poincaré Probab. Statist. 40, 299-308 (2004) · Zbl 1041.60079
[21] Newman, C., Piza, M.: Divergence of shape fluctuations in two dimensions. Ann. Probab. 23(3), 977-1005 (1995) · Zbl 0835.60087 · doi:10.1214/aop/1176988171
[22] Petermann, M.: Superdiffusivity of directed polymers in random environment. Ph.D. Thesis Univ. Zürich (2000)
[23] Piza, M.S.T.: Directed polymers in a random environment: some results on fluctuations. J. Statist. Phys. 89(3-4), 581-603 (1997) · Zbl 0945.82527
[24] Rockafeller, R.T.: Convex Analysis. Princeton, NJ: Princeton University Press, 1970
[25] Song, R., Zhou, X.Y.: A remark on diffusion on directed polymers in random environment. J. Statist. Phys. 85(1-2), 277-289 (1996) · Zbl 0924.60053
[26] Stoyan, D. Kendall, W.S., Mecke, J.: Stochastic Geometry and its Applications. New York: John Wiley & Sons, 1987 · Zbl 0622.60019
[27] Sznitman, A.-S.: Brownian Motion, Obstacles and Random Media. Springer Monographs in Mathematics, Berlin-Heidelberg-New York: Springer, 1998 · Zbl 0973.60003
[28] Watson, G.N.: A Treatise on the Theory of Bessel Functions. 2nd ed., Cambridge: Cambridge University Press, 1958 · Zbl 0083.20702
[29] Wu, Liming.: A new modified logarthmic Sobolev inequality for Poisson point processes and several applications. Probab. Theory Related Fields 118, 428-438 (2000) · Zbl 0970.60093 · doi:10.1007/PL00008749
[30] Wüthrich, M.V.: Scaling identity for crossing Brownian motion in a Poissonian potential. Probab. Theory Related Fields 112(3), 299-319 (1998) · Zbl 0938.60099
[31] Wüthrich, M.V.: Superdiffusive behavior of two-dimensional Brownian motion in a Poissonian potential. Ann. Probab. 26(3), 1000-1015 (1998) · Zbl 0935.60099
[32] Wüthrich, M.V.: Fluctuation results for Brownian motion in a Poissonian potential. Ann. Inst. H. Poincaré Probab. Statist. 34(3), 279-308 (1998) · Zbl 0909.60073 · doi:10.1016/S0246-0203(98)80013-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.