zbMATH — the first resource for mathematics

AEGIS: An adaptive ideal-magnetohydrodynamics shooting code for axisymmetric plasma stability. (English) Zbl 1138.76452
Summary: A new linear ideal-magnetohydrodynamics stability code for axisymmetric plasmas, AEGIS, is described. The AEGIS code employs adaptive shooting in the radial direction and Fourier decomposition in the poloidal direction. The general solution is a linear combination of the independent solutions of the Euler-Lagrange equations solved by the adaptive shooting. A multiple-region matching technique is used to overcome the numerical difficulty associated with the stiff nature of the independent solutions. Benchmarks with other MHD codes show good agreement. Because it is adaptive, the AEGIS code has very good resolution near the singular surfaces of MHD modes. AEGIS has the additional advantage of allowing the investigation of modes with not only low mode numbers, but also intermediate to high mode numbers.

76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76E25 Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
76W05 Magnetohydrodynamics and electrohydrodynamics
Full Text: DOI
[1] Grimm, R.C.; Greene, J.M.; Johnson, J.L., Methods of computational physics, vol. 9, (1976), Academic Press New York, London, pp. 253-280
[2] Chance, M.S.; Greene, J.M.; Grimm, R.C.; Johnson, J.L.; Manickam, J.; Kerner, W.; Berger, D.; Bernard, L.C.; Gruber, R.; Troyon, F.J., Comparative numerical studies of ideal magnetohydrodynamic instabilities, J. comput. phys., 28, 1-13, (1978)
[3] Gruber, R.; Troyon, F.; Berger, D.; Bernard, L.C.; Roussert, S.; Schreiber, R.; Kerner, W.; Schneider, W.; Roberts, K.V., ERATO stability code, Comput. phys. commun., 22, 323-377, (1981)
[4] Gruber, R.; Troyon, F.; Roussert, S.; Kerner, W.; Bernard, L.C., Transform of ERATO into a δW code, Comput. phys. commun., 22, 383-387, (1981)
[5] Bernard, L.C.; Helton, F.J.; Moore, R.W., GATO: an MHD stability code for axisymmetric plasmas with internal separatrices, Comput. phys. commun., 24, 377-380, (1981)
[6] Grimm, R.C.; Dewar, R.L.; Manickam, J., Ideal MHD stability calculations in axisymmetric toroidal coordinate systems, J. comput. phys., 49, 94-117, (1983) · Zbl 0505.76139
[7] A.H. Glasser, The direct criterion of Newcomb for the stability of an axisymmetric toroidal plasma, Los Alamos Report LA-UR-95-528, 1997.
[8] Cheng, C.Z.; Chance, M.S., NOVA: A nonvariational code for solving the MHD stability of axisymmetric toroidal plasmas, J. comput. phys., 71, 124-146, (1987) · Zbl 0618.76042
[9] Bondeson, A.; Vlad, G.; Luetjens, H., Resistive toroidal stability of internal kink modes in circular and shaped tokamaks, Phys. fluids B, 4, 1889-1900, (1992)
[10] Degtyarev, L.; Martynov, A.; Medvedev, S.; Troyon, F.; Villard, L.; Gruber, R., The KINX ideal MHD stability code for axisymmetric plasmas with separatrix, Comput. phys. commun., 103, 10-27, (1997)
[11] Mikhailovskii, A.B.; Huysmans, G.T.A.; Sharapov, S.E.; Kerner, W., Optimization of computational MHD normal mode analysis for tokamaks, Plasma phys. rep., 23, 844-857, (1997)
[12] Newcomb, W.A., Hydromagnetic stability of a diffuse linear pinch, Ann. phys. (N.Y.), 10, 232-267, (1960) · Zbl 0103.43702
[13] Wilson, H.R.; Snyder, P.B.; Huysmans, G.T.A.; Miller, R.L., Numerical studies of edge localized instabilities in tokamaks, Phys. plasmas, 9, 1277-1286, (2002)
[14] Snyder, P.B.; Wilson, H.R.; Ferron, J.R.; Lao, L.L.; Leonard, A.W.; Osborne, T.H.; Turnbull, A.D.; Mossessian, D.; Murakami, M.; Xu, X.Q., Edge localized modes and the pedestal: a model based on coupled peeling ballooning modes, Phys. plasmas, 9, 2037-2043, (2002)
[15] Wilson, H.R.; Miller, R.L., Access to second stability region for coupled peeling-ballooning modes in tokamaks, Phys. plasmas, 6, 873-876, (1999)
[16] Miller, R.L.; Van Dam, J.W., Hot particle stabilization of ballooning modes in tokamaks, Nucl. fusion, 27, 2101-2112, (1987)
[17] Hamada, S., Hydromagnetic equilibria and their proper coordinates, Nucl. fusion, 2, 23-37, (1962)
[18] Chance, M.S., Vacuum calculations in azimuthally symmetric geometry, Phys. plasmas, 4, 2161-2180, (1997)
[19] Gruber, R.; Rappaz, J., Finite element methods in linear ideal magnetohydrodynamics, (1985), Springer Berlin · Zbl 0573.76001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.