×

zbMATH — the first resource for mathematics

Critical points of an algebraic function. (English) Zbl 0223.14003

MSC:
14B25 Local structure of morphisms in algebraic geometry: étale, flat, etc.
14A10 Varieties and morphisms
14C20 Divisors, linear systems, invertible sheaves
57R20 Characteristic classes and numbers in differential topology
14F45 Topological properties in algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] [SGA 6] Berthelot, P., Grothendieck, A., Illusie, L.: Theorie globale des intersections et theoreme de Riemann-Roch. Paris (?)
[2] [EGA III] Grothendieck, A.: Élements de géometric algébrique III. Publ. Math. de l’Inst. des Hautes Ét. Sci., Paris, No. 11 et 17 (1963).
[3] [B-S] Borel, A., Serre, J.-P.: Le theoreme de Riemann-Roch. Bull. Soc. Math. France86, 97-136 (1958).
[4] [G] Grothendieck, A.: La théorie des classes de Chern. Bull. Soc. Math. France (86), 137-154 (1958). · Zbl 0091.33201
[5] [Ig] Igusa, J.I.: Betti and Picard numbers of an abstract algebraic surface. Proc. Nat. Acad. Sci., USA (46), 724-726 (1960). · Zbl 0099.16402 · doi:10.1073/pnas.46.5.724
[6] [Iv] Iversen, B.: Numerical invariants and multiple planes Amer. J. of Math. (to appear).
[7] [J] Jung, H.W.E.: Algebraische Flächen. Hannover. Helwing 1925. · JFM 51.0522.03
[8] [M] Milnor, J.: Singular points of complex hypersurfaces. Annals of Math. Studies Princeton Univ. Press61, 1968. · Zbl 0184.48405
[9] [M-O] Milnor, J., Orlik, P.: Isolated singularities defined by weighted homogeneous polynomials (to appear).
[10] [?a] ?afarevi?, I. R.: Algebraic surfaces. Proc. of the Stecklov Inst. of Math.75 (1965). Translated by Amer. Math. Soc., Providence, Rhode Island, 1967.
[11] [Se] serre, J.-P.: Algèbre Locale-Multiplicités. Lecture Notes in Mathematics No. 11. Berlin-Heidelberg-New York: Springer 1965.
[12] [Z] Zariski, O.: Algebraic surfaces. Berlin: Springer 1935. · Zbl 0010.37103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.