Subgroups of finite index of Fuchsian groups. (English) Zbl 0223.20053


20H10 Fuchsian groups and their generalizations (group-theoretic aspects)
Full Text: DOI EuDML


[1] Cohen, D. E.: Ends and free products of groups. Math. Z.114, 9-18 (1970). · doi:10.1007/BF01111864
[2] Dehn, M.: Über unendliche diskontinuierliche Gruppen. Math. Ann.71, 116-144 (1911). · doi:10.1007/BF01456932
[3] Dunwoody, M. J.: The ends of finitely generated groups. J. Algebra12, 339-344 (1969). · Zbl 0205.03004 · doi:10.1016/0021-8693(69)90035-0
[4] Fricke, R., Klein, F.: Vorlesungen über die Theorie der automorphen Funktionen. Leipzig-Berlin: Teubner 1926.
[5] Karrass, A., Solitar, D.: Note on a theorem of Schreier. Proc. Amer. Math. Soc.8, 696-697 (1957). · Zbl 0078.01401 · doi:10.1090/S0002-9939-1957-0086813-1
[6] ??: The subgroups of a free product of two groups with an amalgamated subgroup. Trans. Amer. Math. Soc.150, 227-255 (1970). · Zbl 0223.20031 · doi:10.1090/S0002-9947-1970-0260879-9
[7] Magnus, W.: Residually finite groups. Bull. Amer. Math. Soc.75, 305-316 (1969). · Zbl 0196.04704 · doi:10.1090/S0002-9904-1969-12149-X
[8] ? Karrass, A., Solitar D.: Combinatirial group theory: Presentations of groups. Pure and Appl. Math., Vol. 13. New York: Interscience 1966. · Zbl 0138.25604
[9] Seifert, H., Threlfall, W.: Lehrbuch der Topologie. New York: Chelsea Publishing Company 1945.
[10] Shenitzer, A.: Decomposition of a group with a single defining relation into a free product. Proc. Amer. Math. Soc.6, 237-279 (1955). · Zbl 0064.02204
[11] Stallings, J. R.: On torsion-free groups with infinitely many ends. Ann. of Math.88, 312-334 (1968). · Zbl 0238.20036 · doi:10.2307/1970577
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.