D’Alarcao, Hugo Biregular semigroups. II. (English) Zbl 0223.20072 Czech. Math. J. 20(95), 549-555 (1970). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 Review MSC: 20M17 Regular semigroups 20M12 Ideal theory for semigroups 20M30 Representation of semigroups; actions of semigroups on sets 06A12 Semilattices Citations:Zbl 0223.20071 PDF BibTeX XML Cite \textit{H. D'Alarcao}, Czech. Math. J. 20(95), 549--555 (1970; Zbl 0223.20072) Full Text: EuDML OpenURL References: [1] A. H. Clifford: Semigroups admitting relative inverses. Annals of Math. 42 (1941), 1037–1048. · Zbl 0063.00920 [2] A. H. Clifford, G. B. Preston: Algebraic theory of semigroups, Vols. 1 and 2. Amer. Math. Soc. Surveys 7, 1961, 1967. [3] H. D’Alarcao: Biregular semigroups I. Czech. Math. J. 20 (95), (1970), 544-548. · Zbl 0223.20071 [4] H. J. Hoehnke: Structure of semigroups. Canad. J. Math. 18 (1966), 449-491. · Zbl 0149.02402 [5] D. R. Morrison: Biregular rings and the ideal lattice isomorphisms. Proc. Amer. Math. Soc. 6 (1952), 46-49. · Zbl 0064.03003 [6] M. Petrich: The maximal semilattice decomposition of a semigroup. Math. Zeitschr. 85 (1964), 68-82. · Zbl 0124.25801 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.