zbMATH — the first resource for mathematics

Eigenvalue problems associated with Korn’s inequalities. (English) Zbl 0223.73011

74B99 Elastic materials
74H99 Dynamical problems in solid mechanics
Full Text: DOI
[1] Korn, A., Die Eigenschwingungen eines elastischen Körpers mit ruhender Oberfläche. Akad. der Wissensch., Munich, Math.-phys. Kl, Berichte 36, 351–401 (1906). · JFM 37.0825.01
[2] Korn, A., Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen. Bulletin Internationale, Cracovie Akademie Umiejet, Classe des sciences mathématiques et naturelles, 705–724 (1909). · JFM 40.0884.02
[3] Friedrichs, K. O., On the boundary-value problems of the theory of elasticity and Korn’s inequality. Annals of Mathematics 48, 441–471 (1947). · Zbl 0029.17002 · doi:10.2307/1969180
[4] Toupin, R. A., Saint-Venant’s principle. Archive for Rational Mechanics and Analysis 18, 83–96 (1965). · Zbl 0203.26803 · doi:10.1007/BF00282253
[5] Mikhlin, S. G., The Problem of the Minimum of a Quadratic Functional. San Francisco: Holden-Day, Inc. 1965. · Zbl 0121.32801
[6] Eidus, D. M., On a mixed problem of elasticity theory. Dokl. Akad. Nauk SSSR 76, 181–184 (1951). (Russian.)
[7] Fichera, G., Sull’esistenza e sul calcolo delle soluzioni dei problemi al contorno relativi all’equilibrio di un corpo elastico. Annali della Scuola Normale Superiori di Pisa, Ser. III, 4, 35–99 (1950). · Zbl 0041.06701
[8] Fichera, G., Linear Elliptic Differential Systems and Eigenvalue Problems. Berlin-Heidelberg-New York: Springer 1965. · Zbl 0138.36104
[9] Hlaváček, I., & J. Nečas, On inequalities of Korn’s type. I. Boundary-value problems for elliptic systems of partial differential equations. Archive for Rational Mechanics and Analysis 36, 305–311 (1970). · Zbl 0193.39001 · doi:10.1007/BF00249518
[10] Hlaváček, I., & J. Nečas, On inequalities of Korn’s type. II. Applications to linear elasticity. Archive for Rational Mechanics and Analysis 36, 312–334 (1970). · Zbl 0193.39002 · doi:10.1007/BF00249519
[11] Bernstein, B., & R. A. Toupin, Korn inequalities for the sphere and circle. Archive for Rational Mechanics and Analysis 6, 51–64 (1960). · Zbl 0094.30001 · doi:10.1007/BF00276153
[12] Payne, L. E., & H. F. Weinberger, On Korn’s inequality. Archive for Rational Mechanics and Analysis 8, 89–98 (1961). · Zbl 0107.31105 · doi:10.1007/BF00277432
[13] Dafermos, C. M., Some remarks on Korn’s inequality. Zeitschrift für angewandte Mathematik und Physik (ZAMP) 19, 913–920 (1968). · Zbl 0169.55904 · doi:10.1007/BF01602271
[14] Horgan, C. O., Eigenvalue Problems Associated with Korn’s Inequalities in the Theory of Elasticity. Ph. D. thesis, California Institute of Technology, Pasadena, California, June 1970.
[15] Lekhnitskii, S. G., On some problems related to the theory of bending of thin strips. Prikl. Mat. i Mech. (PMM) 2, 181–210 (1938). (Russian with German summary.)
[16] Sokolnikoff, I. S., Mathematical Theory of Elasticity. Mimeographed lecture notes, Brown University, pp. 382–386 (1941).
[17] Green, A. E., & W. Zerna, Theoretical Elasticity. Oxford: Oxford University Press 1954.
[18] Gurtin, M. E., & E. Sternberg, On the first boundary-value problem of linear elastostatics. Archive for Rational Mechanics and Analysis 6, 177–187 (1960). · Zbl 0094.36901 · doi:10.1007/BF00276161
[19] Mikhlin, S. G., Further investigation of the Cosserat functions. Vestnik Leningrad Univ. 22, no. 7, 96–102 (1967). (Russian with English summary.)
[20] Ericksen, J. L., On the Dirichlet problem for linear differential equations. Proc. American Math. Soc. 8, 521–522 (1957). · Zbl 0078.27901 · doi:10.1090/S0002-9939-1957-0087001-5
[21] Muskhelishvili, N. I., Some Basic Problems of the Mathematical Theory of Elasticity. Fourth Edition. Groningen: P. Noordhoff 1963. · Zbl 0124.17404
[22] Mikhlin, S. G., Integral Equations and Their Applications to Certain Problems in Mechanics, Mathematical Physics and Technology. Second Edition. New York: Pergamon Press 1957. · Zbl 0077.09903
[23] Sherman, D. I., On the distribution of the eigenvalues of the integral equations of the plane theory of elasticity. Trudy Seism. Inst. Akad. Nauk SSSR, No. 82 (1938). (Works, Institute of Seismology, Ac. Sci. USSR.) (Russian.)
[24] Mikhlin, S. G., On Cosserat Functions. In: Boundary Value Problems and Integral Equations. (Problems in the Mathematical Analysis Series, Vol. 1.) Editor: V. I. Smirnov-Izdat. Leningrad. Univ., Leningrad, 1966. (English translation by Consultants Bureau, New York City, 1968 pp. 55–65.)
[25] Cosserat, E., & Cosserat, F., Sur les équations de la théorie de l’élasticité. Comptes Rendus 126, 1089–1091 (1898). · JFM 29.0680.03
[26] Cosserat, E., & Cosserat, F., Sur la déformation infiniment petite d’un ellipsoïde élastique. Comptes Rendus 127, 315–318 (1898). · JFM 29.0681.01
[27] Cosserat, E., & Cosserat, F., Sur la solution des équations de l’élasticité, dans le cas où les valeurs des inconnues à la frontière sont données. Comptes Rendus 133, 145–147 (1901). · JFM 32.0799.02
[28] Bitsadze, A. V., Boundary Value Problems for Second Order Elliptic Equations. Amsterdam: North-Holland Publishing Company 1968. · Zbl 0167.09401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.