Every two elementarily equivalent models have isomorphic ultrapowers. (English) Zbl 0224.02045


03C20 Ultraproducts and related constructions
Full Text: DOI


[1] C. C. Chang and H. J. Keisler,Model theory, to appear.
[2] Engelking and Karlowicz,Some theorems of set theory and their topological consequences, Fund. Math.57 (1965), 275–285. · Zbl 0137.41904
[3] T. Frayne, A. Morel and D. Scott,Reduced direct products, Fund. Math.51 (1962), 195–228.
[4] F. Galvin,Horn sentences, Annals Math. Logic,1 (1970), 389–422. · Zbl 0206.27801
[5] J. Los,Quelque remarques, théorèmes et problèmes sur les classes définissable d’algèbres, Mathematical interpretations of formal systems, 98–113, North Holland Publ. Co., Amsterdam, 1955.
[6] H. J. Keisler,Reduced products and Horn classes, Trans. Amer. Math. Soc.,117 (1965), 307–328. · Zbl 0199.01103
[7] H. J. Keisler,Ultraproducts and elementary classes, Ph. D. thesis, Univ. of Calif. Berkeley California, 1961. See also Kon, Nederl. Akad. Wetensch. Proc. Ser. A64 (1961), 477–495. [Indag. Math. 23]. · Zbl 0118.01501
[8] H. J. Keisler,Good ideals in field of sets, Annals of Math.79 (1964), 338–359. · Zbl 0137.00803
[9] H. J. Keisler,Ultraproducts and saturated models, Koninkl. Nederl. Akad. Wetensch., Proc. Ser. A67 and Indag. Math.26 (1964), 178–186. · Zbl 0199.01101
[10] H. J. Keisler,A survey of ultraproducts, Proceedings of the 1964 International Congress for logic, methodology and philosophy of science, held in Jerusalem 1964, Bar-Hillel (ed.), North-Holland Publ. Co. Amsterdam, pp. 112–126. · Zbl 0129.25805
[11] H. J. Keisler,Limit ultrapowers, Trans. Amer. Math. Soc.107 (1963), 382–408. · Zbl 0122.24504
[12] S. Kochen,Ultraproducts in the theory of models, Annals of Math. (2)74 (1961), 221–261. · Zbl 0132.24602
[13] K. Kunen,Ultrafilters and independent sets, to appear in Trans. Amer. Math. Soc. · Zbl 0263.02033
[14] R. Mansfield,The theory of Boolean ultrapowers, Annals Math. Logic2 (1971), 297–323. · Zbl 0216.29401
[15] R. Mansfield,Horn classes and reduced direct products,a preprint. · Zbl 0261.02034
[16] M. D. Morley and R. L. Vaught,Homogeneous universal models, Math. Scand.11 (1962), 37–57. · Zbl 0112.00603
[17] J. L. Bell and A. B. Slomson,Models and ultraproducts, North-Holland Publ. Co. Amsterdam, 1969. · Zbl 0179.31402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.