×

zbMATH — the first resource for mathematics

Contributions to the theory of the classical Banach spaces. (English) Zbl 0224.46041

MSC:
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46E15 Banach spaces of continuous, differentiable or analytic functions
46B25 Classical Banach spaces in the general theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bessaga, C; Pełczyński, A, On bases and unconditional convergence of series in Banach spaces, Studia math., 17, 151-164, (1958) · Zbl 0084.09805
[2] Bessaga, C; Pełczyński, A, Spaces of continuous functions IV, Studia math., 19, 53-62, (1960) · Zbl 0094.30303
[3] Boas, R.P, Isomorphism between Hp and lp, Amer. J. math., 77, 655-656, (1955) · Zbl 0065.34502
[4] Day, M.M, Normed linear spaces, (1958), Berlin · Zbl 0082.10603
[5] Dunford, N; Schwartz, J.T, Linear operators I, (1958), New York
[6] Ellis, H.W; Halperin, I, Haar functions and the basis problem for Banach space, J. London math. soc., 31, 28-39, (1956) · Zbl 0070.33604
[7] James, R.C, Uniformly non-square Banach spaces, Ann. of math., 80, 542-550, (1964) · Zbl 0132.08902
[8] Kwapień, S; Pełczyński, A, The main triangle projection in matrix spaces and its application, Studia math., 34, 43-68, (1970) · Zbl 0189.43505
[9] Lazar, A.J; Lindenstrauss, J, Banach spaces whose duals are L1 spaces and their representing matrices, Acta math., 126, 165-193, (1971) · Zbl 0209.43201
[10] Lindenstrauss, J, A short proof of Liapounoff’s convexity theorem, J. math. and mech., 15, 971-972, (1966) · Zbl 0152.24403
[11] Lindenstrauss, J, On complemented subspaces of m, Israel J. math., 5, 153-156, (1967) · Zbl 0153.44202
[12] Lindenstrauss, J; Pełczyński, A, Absolutely summing operators in \(L\)_p spaces and their applications, Studia math., 29, 275-326, (1968) · Zbl 0183.40501
[13] Lindenstrauss, J; Rosenthal, H.P, Automorphisms in c0, l1 and m, Israel J. math., 7, 227-239, (1969) · Zbl 0186.18602
[14] Michael, E; Pełczyński, A, A linear extension theorem, Illinois J. math., 11, 563-579, (1967) · Zbl 0171.10901
[15] Milman, V.P, The spectrum of bounded continuous functions defined on the unit sphere of a Banach space, Funktional. anal. i prilozen., 3, 67-79, (1969), (in Russian)
[16] Milyutin, A.A, Isomorphism of spaces of continuous functions on compacta of the power continuum, Teoriya funktsii funkcional. anal. i prilozen kharkov, 2, 150-156, (1966), (in Russian)
[17] Mitiagin, B.S, An interpolation theorem for modular spaces, Mat. sb., 66, 473-482, (1965), (in Russian)
[18] Olevskii, A.M, Fourier series and Lebesgue functions, (), 236-239, (in Russian)
[19] Pełczyński, A, Projections in certain Banach spaces, Studia math., 19, 209-228, (1960) · Zbl 0104.08503
[20] Pełczyński, A, Linear extensions, linear averagings and their applications to linear topological classification of spaces of continuous functions, Rozprawy mat., 58, (1968) · Zbl 0165.14603
[21] Pełczyński, A, On C(S) subspaces of separable Banach spaces, Studia math., 31, 513-522, (1968) · Zbl 0169.15402
[22] Pełczyński, A; Singer, I, On nonequivalent bases and conditional bases in Banach spaces, Studia math., 25, 5-25, (1964) · Zbl 0187.05403
[23] Rosenthal, H.P, On the subspaces of Lp (p > 2) spanned by sequences of independent random variables, Israel J. math., 8, 273-303, (1970) · Zbl 0213.19303
[24] Semadeni, Z, Banach spaces non isomorphic to their Cartesian squares II, Bull. acad. polon. sci., 8, 81-84, (1960) · Zbl 0091.27802
[25] Sierpiński, W, Cardinal and ordinal numbers, Monografie mat., (1958) · Zbl 0083.26803
[26] Sobczyk, A, Projections of the space m on its subspace c0, Bull. amer. math. soc., 47, 938-947, (1941) · JFM 67.1045.01
[27] Zakharyuta, V.P; Yudovich, V.I, The general form of the linear functional in Hp, Uspehi. mat. nauk., 19, 139-142, (1964), (in Russian) · Zbl 0128.34305
[28] \scA. L. Shields and D. L. Williams, Bounded projections, duality, and multipliers in spaces of analytic functions, to appear. · Zbl 0227.46034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.