Walsh, J. B.; Meyer, P. A. Quelques applications des résolvantes de Ray. (Some applications of Ray resolvents). (French) Zbl 0224.60037 Invent. Math. 14, 143-166 (1971). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 20 Documents MSC: 60J40 Right processes 60J35 Transition functions, generators and resolvents PDFBibTeX XMLCite \textit{J. B. Walsh} and \textit{P. A. Meyer}, Invent. Math. 14, 143--166 (1971; Zbl 0224.60037) Full Text: DOI EuDML References: [1] Ray, D.: Resolvents, transition functions, and strongly markovian processes. Ann. Math.70, 43-75 (1959). · Zbl 0092.34501 · doi:10.2307/1969891 [2] Knight, F.: Note on regularisation of Markov processes. Ill. J. Math.9, 548-552 (1965). · Zbl 0143.20002 [3] Kunita, H., Watanabe, T.: Markov processes and Martin boundaries. Ill. J. Math.9, 485-526 (1965). · Zbl 0147.16505 [4] ??: Some theorems concerning resolvents over locally compact spaces. Proc. 5th Berkeley Symp.II, 131-164 (1967). [5] Shih, C. T.: On extending potential theory to all strong Markov processes. Ann. Inst. Fourier20, 303-315 (1970). · Zbl 0193.46201 [6] Walsh, J. B.: Two footnotes to a theorem of Ray. Séminaire de Probabilités V, Université de Strasbourg, 1971, 283-289. Lecture Notes in Mathematics191, Berlin-Heidelberg-New York: Springer 1971. [7] Chung, K. L.: On the boundary theory for Markov chains I, II. Acta Math.110, 19-77 (1963) et115, 111-163 (1966). · Zbl 0292.60121 · doi:10.1007/BF02391854 [8] Doob, J. L.: State spaces for Markov chains. Trans. Amer. Math. Soc.149, 111-121 (1970). · Zbl 0231.60048 · doi:10.1090/S0002-9947-1970-0258131-0 [9] ?: Compactification of the discrete state space of a Markov process. Z. Wahrscheinlichkeitstheorie verw. Geb.10, 236-251 (1968). · Zbl 0164.19202 · doi:10.1007/BF00536277 [10] Walsh, J. B.: The Martin boundary and completion of Markov chains. Z. Wahrscheinlichkeitstheorie verw. Geb.14, 169-188 (1970). · Zbl 0187.41303 · doi:10.1007/BF01111415 [11] Blumenthal, R. M., Getoor, R. K.: Markov processes and potential theory. New York: Academic Press 1968. · Zbl 0169.49204 [12] Meyer, P. A.: Probability et potentiels. Paris: Hermann et Boston: Blaisdell 1966. [13] Dellacherie, C.: La théorie générale des processus (Erg. der Math., Berlin-Heidelberg-New York: Springer, à paraître). [14] Meyer, P. A.: Guide détaillé de la théorie générale des processus. Séminaire de probabilités II, Université de Strasbourg, 1968. Lecture Notes in Mathematics51, Berlin-Heidelberg-New York: Springer. [15] ?: Un résultat élémentaire sur les temps d’arrêt. Séminaire de probabilités III, 1969. Lecture Notes in Mathematics88. Berlin-Heidelberg-New York: Springer 1969. [16] Dellacherie, C.: Ensembles aléatoires. Séminaire de Probabilités III, Université de Strasbourg, 1969. Lecture Notes in Mathematics88, Berlin-Heidelberg-New York: Springer 1969. [17] Bourbaki, N.: Topologie Générale, chap. IX (utilisation des nombres réels en topologie générale). Paris: Hermann 1958, (Act. Sci. Ind. 1045). [18] Meyer, P. A.: Compactifications associées à une résolvante. Séminaire de Probabilités II, Université de Strasbourg, 1968. Lecture Notes in Mathematics51, Berlin-Heidelberg-New York: Springer 1968. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.