zbMATH — the first resource for mathematics

On the influence of Hall effect of magnetohydrodynamical wave propagation in an incompressible fluid. (Italian) Zbl 0224.76103

76W05 Magnetohydrodynamics and electrohydrodynamics
76D33 Waves for incompressible viscous fluids
Full Text: DOI
[1] Spitzer, L., Physics of fully ionized gases (1962), New York: Interscience, New York · Zbl 0163.23303
[2] Cowling, T. G., Magnetohydrodynamics (1957), New York: Interscience, New York
[3] Kihara, T., Macroscopic foundation of plasma dynamics, J. Phys. Soc. Japan, 13, 473-481 (1958)
[4] Baranov, V. B.; Liubimov, G. A., On the form of the generalized Ohm’s law in a completely ionzed gas, P.M. M., 25, 694-700 (1961) · Zbl 0122.23101
[5] Liubimov, G. A., On the form of Ohm’s law in magnetohydrodynamics, P.M.M., 25, 913-929 (1961) · Zbl 0111.45303
[6] H. Alfvén,Cosmical electro-dynamics, Oxford, 1963.
[7] V. C. A. Ferraro, C. Plumpton,Magneto-fluid mechanics, Oxford, 1966. · Zbl 0105.39804
[8] Jancel, R.; Kahan, Th., Électrodynamique des plasmas, Tome 1 (1963), Paris: Dunod, Paris · Zbl 0125.23202
[9] Sutton, G. W.; Sherman, A., Engineering magnetohydrodynamics (1965), New York: Mc Graw-Hill, New York
[10] Holt, E. H.; Haskel, R. E., Foundations of plasma dynamics (1965), New York: McMillan, New York
[11] Agostinelli, C., Magnetofluidodinamica (1966), Roma: Monografia CNR, Cremonese, Roma
[12] Van Kampen, N. G.; Felderhof, B. U., Theoretical methods in plasma Physics (1967), Amsterdam: North-Holland, Amsterdam · Zbl 0159.29601
[13] Tanenbaum, B. S., Plasma Physics (1967), New York: Mc Graw-Hill, New York
[14] Chekmarev, I. B., The steady flow of a weakly ionized gas between parallel plates assuming anisotropic conductivity, P.M.M., 25, 701-707 (1961)
[15] Sakhnovskii, E. G.; Ufliand, Ia. S., The influence of anisotropic conductivity on the unsteady motion of a conducting gas in a plane channel, P.M.M., 26, 806-815 (1962)
[16] Ufliand, Ia. S., Nonstationary, plane, parallel flow of a viscous electrically-conducting gas with anisotropic conductivity, P.M.M., 26, 1267-1275 (1962) · Zbl 0125.18402
[17] Rai, L., Hall effects on thermal instability in a rotating layer of a conducting fluid, Canadian J. Phys., 46, 2533-2537 (1968)
[18] Agrawal, S. C., Rayleigh-Taylor instability with Hall-currents, J. Phys. Soc. Japan, 26, 561-565 (1969)
[19] Becker, R., Teoria della elettricità (1949), Firenze: Sansoni, Firenze
[20] Agostinelli, C., Magnetofluidodinamica, Boll. U.M.I., 20, 1-79 (1965)
[21] Shih-I, Pai, Magnetogasdynamics and plasma dynamics (1962), Wien: Springer-Verlag, Wien · Zbl 0102.41702
[22] Roberts, K. V.; Taylor, J. B., Magnetohydrodynamic equations for finite Larmor radius, Phys. Rev. Letters, 8, 197-198 (1962) · Zbl 0106.43904
[23] Hosking, R. J., New instabilities due to Hall effect, Phys. Rev. Letters, 15, 344-345 (1965)
[24] Talwar, S. P.; Kalra, G. L., Combined Taylor and Helmholtz instability in hydromagnetics including Hall effect, J. Plasma Physics, 1, 145-155 (1967)
[25] Sen, A. K.; Chou, C. K., The Hall effect and Kelvin-Helmholtz instability in a plasma, Canadian J. Phys., 46, 2557-2561 (1968) · Zbl 0179.58903
[26] Sen, A. K.; Chou, C. K., Gravitational instability with Hall effect in a plasma, Canadian J. Phys., 46, 2553-2556 (1968) · Zbl 0179.58902
[27] Das, K. P., Stability of gravitating fluid layer of infinite extent but finite thickness including Hall effect, Canadian J. Phys., 46, 2201-2205 (1968) · Zbl 0167.26603
[28] Hans, H. K., Magnetogravitational instability of an unbounded plasma with Hall current and Larmor radius, Ann. d’Astrophysique, 29, 339-341 (1966)
[29] Brushlinskii, K. V.; Morozov, A., On the evolutionary of equations of magnetohydrodynamics taking the Hall effect into account, P.M.M., 32, 979-982 (1968)
[30] J. W. Dungey,Cosmic electrodynamics, Cambridge, 1958. · Zbl 0082.23603
[31] Lehnert, B., Magnetohydrodynamic waves under the action of the Coriolis force, Astrophy. J., 119, 647-654 (1954)
[32] Kulsrud, R., General stability theory in plasma Physics, Rend. Scuola Int. di Fisica E. Fermi, XXV, 54-96 (1964)
[33] Bernstein, I. B.; Frieman, E. A.; Kruskal, M. D.; Kulsrud, R. M., An energy principle for hydromagnetic stability problems, Proc. Roy. Soc., A 244, 17-40 (1958) · Zbl 0081.21704
[34] Jeffrey, A., Magnetohydrodynamics (1966), London: Oliver and Boyd, London · Zbl 0163.23502
[35] S. Chandrasekar,Hydrodynamic and hydromagnetic stability, Oxford, 1961.
[36] Hughes, W. F.; Young, F. J., The electromagnetodynamics of fluids (1966), New York: J. Wiley, New York
[37] R. Nardini,Magnetofluidodinamica, C.I.M.E. 1962, 1^a Conferenza, Cremonese, Roma, 1962.
[38] Kaplan, S. A., The effect of anisotropic conductivity in a magnetic field on the structure of a shock wave in magnetohydrodynamics, Zh. Exsp. Teoret. Fiz., 38, 252-253 (1960)
[39] Liubimov, G. A., The structure of magnetohydrodynamic shock waves in a gas with ani sotropic conductivity, P.M.M., 25, 266-276 (1961)
[40] Kulikovskii, A. G.; Liubimov, G. A., The structure of a magnetohydrodynamic shock wave in a gas with an anisotropic conductivity, P.M.M., 26, 1197-1199 (1962) · Zbl 0117.42404
[41] Leonard, B. P., Hall currents in magnetohydrodynamic shock waves, Phys. Fluids, 9, 917-926 (1966)
[42] R. J. Tayler,The influence of the Hall effect on a simple hydromagnetic stability problem, Nuclear Fusion, Suppl. Part 3, 1962, pp. 877-881.
[43] Ware, A. A., Instability waves in magnetically confined plasmas, Plasma Physics, 3, 93-97 (1961)
[44] Kalra, G. L.; Talwar, S. P., Magnetogravitational instability of unbounded plasma with Hall effect, Ann. d’Astrophysique, 27, 102-103 (1964)
[45] Hosking, R. J., Stability of a self-gravitating plasma cylinder including Hall effect, Phys. Fluids, 10, 588-90 (1967)
[46] Schram, P. P. J. M.; Tasso, T., Persistence of MHD-stability in the two fluid model, Nuclear Fusion, 7, 91-98 (1967)
[47] Garrison, G. W.; Hassan, H. A., Screw instability in a linear Hall accelerator, Phys. Fluids, 10, 711-718 (1967)
[48] Nayyar, N. K.; Trehan, S. K., Effect of Hall current on Rayleigh-Taylor instability of a plasma, Phys. Rev. Letters, 17, 526-528 (1966)
[49] Hosking, R. J., Rayleigh-Taylor problem for a Hall plasma, J. Plasma Phys., 2, 613-616 (1968)
[50] Raghavachar, M. R., Thermal instability in the presence of Hall current, Astron. and Astrophy., 2, 18-21 (1969)
[51] Yantovskii, E. Y., Longitudinal electromotive forces and Hall effect for channel flow of an ionized gas, Magnetohydrodynamics, 45-49 (1965), New York: The Faraday Press Inc., New York
[52] Zelichenko, E. N.; Milleryan, T. E.; Pol’Skii, N. I., Optimal regimes of magnetogasdynamics channel flows with Hall effects, 50-53 (1965), New York: The Faraday Press Inc., New York
[53] Hasimoto, H.; Janowitz, G. S., Hall effect in the two-dimensional flow along an insulating plane, Phys. Fluids, 8, 2234-2239 (1965)
[54] Yen, J. T., Magnetoplasmadynamic channel flow and energy conversion with Hall current, Phys. Fluids, 7, 723-729 (1964) · Zbl 0124.43804
[55] G. M. Bam-Zelikovich,Effect of Hall currents on the flow of a conducting gas at high flow velocities, J. Appl. Mech. Tech. Phys., 1965, n. 3, pp. 16-21.
[56] A. I. Morozov, L. S. Solov’ev,The plane flow of an ideally conducting compressible liquid taking the Hall effect into account, Soviet Phys. Tech. Phys., 9, 1965, n. 7.
[57] Naruse, H., The Hall effect on the magnetohydrodynamic flow near a stagnation point, J. Phys. Soc. Japan, 22, 638-653 (1967)
[58] Tang, J. Y. T.; Seebass, R., The effect of tensor conductivity on continuum magnetogasdynamic flows, Quart. Appl. Math., 26, 311-320 (1968) · Zbl 0172.55603
[59] Locke, E. V.; Mccune, J., Growth rates for axial magneto-acoustic waves in a Hall generator, AIAA J., 4, 1748-1751 (1966)
[60] Rosciszewski, J., Acceleration process in the Hall current device, Phys. Fluids, 10, 1095-1099 (1967)
[61] Burlock, J. B.; Brockman, P.; Hess, R. V.; Brooks, D. R., Measurement of velocities and acceleration mechanism for coaxial Hall accelerators, AIAA J., 5, 558-561 (1967)
[62] Ohji, M., Response of magneto-fluid dynamic turbulence to an imposed strong magnetic field in the presence of Hall effect, J. Phys. Soc. Japan, 21, 167-172 (1966)
[63] Helmis, G., Investigation on electrodynamics of electrically conducting media in turbulent motion taking account the Hall effect, Monatsber. Deutschen Akad. Wiss. Berlin, 10, 280-291 (1968) · Zbl 0169.58102
[64] Liubimov, G. A., On the solution of certain problems in magnetohydrodynamics with anisotropic conductivity, P.M.M., 26, 789-805 (1962) · Zbl 0116.42906
[65] Drobyshevskii, E. M., Effect of Hall current on the rotation of a plasma in crossed fields, Soviet Physics-Tech. Phys., 8, 997-1000 (1964)
[66] Hasimoto, H., Swirl of a conducting gas due to the Hall effect, J. Phys. Soc. Japan, 19, 1457-1463 (1964)
[67] L. A. Panchenko,Influence of the Hall effect on hypersonic flow past a wedge, J. Appl. Mech. Tech. Phys., 1965, n. 1, pp. 17-21.
[68] Kolb, A. C.; Thonemann, P. C.; Hintz, E., Transverse fields, Hall currents, and electron drift velocities in a θ-pinch, Phys. Fluids, 8, 1005-1006 (1965)
[69] Lu, Pau-Chang, Rayleigh’s problem in magnetogasdynamics with Hall effect, AIAA J., 3, 2219-2224 (1965)
[70] I. Kim,The Hall effect in an electrically conducting fluid for variable magnetic field and high magnetic Reynolds numbers, J. Appl. Mech. Tech. Phys., 1965, n. 3, pp. 22-24.
[71] Chen, C. L., Hall effect in a collision-dominated gaseous plasma, J. Appl. Phys., 37, 2205-2210 (1966)
[72] Witalis, E. A., Hall effect influence on a highly conducting fluid, Plasma Physics, 9, 415-421 (1967)
[73] Porter, R. W.; Cambel, A. B., Hall effect in flight magnetogasdynamics, AIAA J., 5, 2208-2213 (1967)
[74] Broadbent, E. G., Magnetohydrodynamic wave propagation from a localized source including Hall effect, Phil. Trans. Roy. Soc. London, Ser. A, 263, 119-147 (1968) · Zbl 0164.29201
[75] Witalis, E. A., MHD flow distortion caused by strong Hall effect, Plasma Physics, 10, 109-116 (1968)
[76] Kalikhman, L. E., Elements of magnetogasdynamics (1967), Philadelphia: Saunders, Philadelphia
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.