Simulation of weakly self-similar stationary increment \(\mathbf{Sub}_\varphi(\Omega)\)-processes: A series expansion approach. (English) Zbl 1082.60512

Summary: We consider simulation of \(\text{Sub}_\varphi(\Omega)\)-processes that are weakly selfsimilar with stationary increments in the sense that they have the covariance function \[ R(t,s) = \frac12 \left(t^{2H} + s^{2H} - | t-s|^{2H} \right) \] for some \(H \in (0,1)\). This means that the second order structure of the processes is that of the fractional Brownian motion. Also, if \(H > \frac12\), then the process is long-range dependent. The simulation is based on a series expansion of the fractional Brownian motion due to K. Dzhaparidze and H. van Zanten [Probab. Theory Relat. Fields 130, No. 1, 39–55 (2004; Zbl 1059.60048)]. We prove an estimate of the accuracy of the simulation in the space \(C([0,1])\) of continuous functions equipped with the usual sup-norm. The result holds also for the fractional Brownian motion which may be considered as a special case of a \(\text{Sub}_{x^2/2}(\Omega)\)-process.


60G18 Self-similar stochastic processes
60G15 Gaussian processes
68U20 Simulation (MSC2010)
33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)


Zbl 1059.60048


Full Text: DOI


[1] J. Beran, Statistics for Long-Memory Processes, Chapman and Hall: New York, 1994. · Zbl 0869.60045
[2] V. V. Buldygin and Y. V. Kozachenko, Metric Characterization of Random Variables and Random Processes, American Mathematical Society, Providence: RI, 2000. · Zbl 0998.60503
[3] L. Decreusefond and A. S. Üstünel, ”Stochastic analysis of the fractional Brownian motion,” Potential analysis vol. 10 (2) pp. 177–214, 1999. · Zbl 0924.60034 · doi:10.1023/A:1008634027843
[4] P. Doukhan, G. Oppenheim, and M. Taqqu (eds.), Theory and applications of long-range dependence, Birkhäuser Boston, Inc.: Boston, MA, 2003. · Zbl 1005.00017
[5] K. O. Dzhaparidze and J. H. van Zanten, ”A series expansion of fractional Brownian motion,” Probability Theory and Related Fields vol. 130 pp. 39–55, 2004. · Zbl 1059.60048 · doi:10.1007/s00440-003-0310-2
[6] P. Embrechts and M. Maejima, Selfsimilar Processes, Princeton University Press: Princeton, 2002.
[7] G. A. Hunt, ”Random Fourier transforms,” Transactions of the American Mathematical Society vol. 71 pp. 38–69, 1951. · Zbl 0043.30601 · doi:10.1090/S0002-9947-1951-0051340-3
[8] A. N. Kolmogorov, ”Wienersche Spiralen und einige andere interessante Kurven in Hilbertschen Raum,” Comptes Rendus (Doklady) Acad. Sci. USSR (N.S.) vol. 26 pp. 115–118, 1940.
[9] Y. V. Kozachenko and O. I. Vasilik, ”On the distribution of suprema of \({\text{Sub}}_{\varphi } {\left( \Omega \right)}\) random processes,” Theory of Stochastic Proc. vol. 4 (20) pp. 1–2, 1998, pp. 147–160.
[10] M. A. Krasnoselskii and Y. B. Rutitskii, Convex Functions in the Orlicz spaces, Fizmatiz: Moscow, 1958.
[11] B. Mandelbrot and J. Van Ness, ”Fractional Brownian motions, fractional noises and applications,” SIAM Review vol. 10 pp. 422–437, 1968. · Zbl 0179.47801 · doi:10.1137/1010093
[12] G. Samorodnitsky and M. Taqqu, Stable Non-Gaussian random processes, Chapman and Hall: New York, 1994. · Zbl 0925.60027
[13] G. N. Watson, A Treatise of the Theory of Bessel Functions, Cambridge University Press: Cambridge, England, 1944. · Zbl 0063.08184
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.