×

zbMATH — the first resource for mathematics

Congruence relations on the lattice of partitions in a set. (English) Zbl 0225.06003

MSC:
06B10 Lattice ideals, congruence relations
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] Birkhoff G.: Lattice theory. 3., New York 1967. · Zbl 0153.02501
[2] Borůvka O.: Theorie rozkladů v množině. Spisy Přírodověd. fak. Univ. Brno, No 278 (1946).
[3] Borůvka O.: Grundlagen der Gruppoid- und Gruppentheorie. Berlin 1960. · Zbl 0091.02001
[4] Cohn P. M.: Universal algebra. New York 1965. · Zbl 0141.01002
[5] Draškovičová H.: The lattice of partitions in a set. Acta Fac. rerum natur. Univ. Comenianae Math. 24 (1970), 37-65.
[6] Grätzer G., Schmidt E. T.: Ideals and congruence relations in lattices. Acta math. Acad. scient. hung. 9 (1958), 137-175. · Zbl 0085.02002
[7] Hashimoto J.: Ideal theory for lattices. Math. japon. 2 (1952), 149-186. · Zbl 0048.25903
[8] Hermes H.: Einführung in die Verbandstheorie. 2., Berlin 1967. · Zbl 0153.33203
[9] Ore O.: Theory of equivalence relations. Duke Math. J. 9 (1942), 573-627. · Zbl 0060.06201
[10] Dubreil P., Dubreil-Jacotin M. L.: Théorie algébrique des relations d’equivalence. J. math. pures et appl. (9) 18 (1939), 63-95. · Zbl 0021.01402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.