Evans, Trevor The lattice of semigroup varieties. (English) Zbl 0225.20043 Semigroup Forum 2, 1-43 (1971). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 ReviewsCited in 74 Documents MSC: 20M07 Varieties and pseudovarieties of semigroups PDF BibTeX XML Cite \textit{T. Evans}, Semigroup Forum 2, 1--43 (1971; Zbl 0225.20043) Full Text: DOI EuDML OpenURL References: [1] Austin, A. K.,A note on models of identities, Proc. Amer. Math. Soc. 16 (1965), 522–523. · Zbl 0137.00802 [2] –,A closed set of laws which is not generated by a finite set of laws, Quart. J. Math. Oxford (2), 17 (1966), 11–13. · Zbl 0136.26405 [3] Baker, K. A.,Equational classes of modular lattices, Pac. J. Math., 28 (1969), 9–15. · Zbl 0174.29802 [4] Baumslag, G. and D. Solitar,Some two-generator one-relator non-hopfian groups, Bull. Amer. Math. Soc. 68 (1962), 199–201. · Zbl 0108.02702 [5] Birjukov, A. P.,On infinite sets of identities in semigroups, Algebra i Logika 4 (1965), 31–32 (in Russian). [6] Birjukov, A. P.,The lattice of varieties of idempotent semigroups, All-Union Colloq. on General Algebra, Riga (1967), 16–18 (in Russian). [7] Birjukov, A. P.,On varieties of idempotent semigroups, 1st All-Union Symposium on the Theory of Semigroups, Sverdlovsk (1969), 4–6 (in Russian). [8] Birkhoff, G.,On the structure of abstract algebras, Proc. Cambr. Phil. Soc. 31 (1935), 433–454. · JFM 61.1026.07 [9] Birkhoff, G.,Lattice Theory, Amer. Math. Soc. Colloq. Pub. XXV., 3rd ed. Providence (1967). · Zbl 0153.02501 [10] Burris, S. and E. Nelson,Embedding the Dual of in the lattice of equational classes of commuta-semigroups, to appear. · Zbl 0215.40002 [11] Carlisle, W. H., Ph.D. Thesis, Emory University (1970). [12] Chrislock, J. L.,A certain class of identities on semigroups, Proc. Amer. Math. Soc. 21 (1969), 189–190. · Zbl 0185.04401 [13] Clifford, A. H. and G. B. Preston,The Algebraic Theory of Semigroups, Math. Surveys 7, 2nd ed., 1 (1964), and 2 (1967), Amer. Math Soc. · Zbl 0111.03403 [14] Cohn, P. M.,Universal Algebra, 1965, Harper and Row Publishers. [15] Dean, R. A. and T. Evans,A remark on varieties of lattices and semigroups, Proc. Amer. Math. Soc. 21 (1969), 394–396. · Zbl 0174.30602 [16] Evans, T. and B. H. Neumann,On varieties of groupoids and loops, J. London Math. Soc. 28 (1953), 342–350. · Zbl 0050.01705 [17] Evans, T.,A condition for a cancellation semigroup to be a group, Amer. Math. Monthly, 73 (1966), 1104–1106. · Zbl 0144.01401 [18] –,The number of semigroup varieties, Oxford Quart. J. (2), 19 (1968). [19] –,Finitely presented loops, lattices, etc. are hopfian, J. London Math. Soc. 44 (1969), 551–552. · Zbl 0177.02702 [20] –,Some connections between residual finiteness, finite embeddability and the word problem. J. London Math. Soc. (2), 1 (1969), 399–403. · Zbl 0184.03502 [21] –,Schreier varieties of semigroups, Math. Zeitschr. 112 (1969), 296–299. · Zbl 0179.03802 [22] Evans, T.,Identical relations in loops,I., J. Austr. Math. Soc. (to appear). · Zbl 0219.20053 [23] Evans, T.,Identical relations in loops,II., (in preparation). · Zbl 0219.20053 [24] Fennemore, C. F.,All varieties of bands, Ph.D. dissertation, Pennsylvania State University, 1969. · Zbl 0206.30401 [25] Gerhard, J. A.,The lattice of equational classes of idempotent semigroups, J. of Algebra, 15 (1970), 195–224. · Zbl 0194.02701 [26] Gratzer, G.,Equational classes of lattices, Duke Math. J. 33 (1966), 613–622. · Zbl 0158.27101 [27] –,Universal Algebra, Princeton, D. Van Nostran Company, Inc., 1968. [28] Green, J. A. and D. Rees,On semigroups in which x r=x, Proc. Cambr. Phil. Soc. 48 (1952), 35–40. · Zbl 0046.01903 [29] Head, T. J.,The varieties of commutative monoids, Nieuw Archief voor Wiskunde (3), XVI (1968), 203–206. · Zbl 0165.33601 [30] Jezek, J.,Primitive classes of algebras with unary and nullary operations, Coll. Math. XX, Fasc. 2 (1969), 159–179. · Zbl 0188.04801 [31] Jonsson, B. and A. Tarski,On two properties of free algebras, Math. Scand. 9 (1961), 95–101. · Zbl 0111.02002 [32] Jonsson, B.,Algebras whose congruence lattices are distributive, Math. Scand. 21 (1967), 110–121. · Zbl 0167.28401 [33] –,Equational classes of lattices, Math. Scand. 22 (1968), 187–196. · Zbl 0185.03601 [34] Kalicki, J. and D. Scott,Equational completeness of abstract algebras, Akademie von Wetenschappen Proc., Series A, 58 (1955), 650–659. · Zbl 0073.24501 [35] Kalicki, J.,The number of equationally complete classes of equations, Akademie von Wetenschappen Proc., Series A, 58 (1955), 660–662. · Zbl 0073.24601 [36] Kimura, N.,The structure of idempotent semigroups (I), Pacific J. Math. 8 (1958), 257–275. · Zbl 0084.02702 [37] Kostrikin, A. I.,On Burnside’s problem, Izvestiya Akad. Nauk S.S.S.R., Ser. Mat. 23 (1959), 3–34. · Zbl 0090.24503 [38] Lyndon, R. C.,Identities in two-valued calculi, Trans. Amer. Math. Soc. 71 (1951), 457–465. · Zbl 0044.00201 [39] –,Two notes on nilpotent groups, Proc. Amer. Math. Soc. 3 (1952), 579–583. · Zbl 0047.25602 [40] Mal’cev, A. I.,Multiplication of classes of algebraic systems, Sibirskii Matematicheskii Zurnal, 8 (1967), 346–365. [41] –,On the general theory of algebraic systems, Mat. Sb. (N.S.) 35 (77) (1954), 3–20. · Zbl 0057.02403 [42] McLean, D.,Idempotent semigroups, Amer. Math. Monthly 6 (1954), 110–113. · Zbl 0055.01404 [43] McKenzie, R.,Equational bases and non-modular lattice varieties (to appear). · Zbl 0265.08006 [44] Murskii, V. L.,The existence in three-valued logic of a closed class with finite basis not having a finite complete system of identities, Soviet Math. Doklady, 6 (1965), 1020–1024. · Zbl 0154.25506 [45] Nelson, E.,The lattice of equational classes of commutative semigroups (to appear). · Zbl 0226.08002 [46] Neumann, B. H.,Identical relations in groups, I. Math. Ann. 114 (1937), 506–525. · Zbl 0016.35102 [47] –,Embedding theorems for semigroups, J. London Math. Soc. 35 (1960), 184–192. · Zbl 0090.01701 [48] Neumann, B. H.,Special Topics in Algebra, Lecture notes, Courant Institute of Mathematical Sciences, New York University, 1961–62. [49] –,Varieties of groups, (invited address) Bull. Amer. Math. Soc. 73 (1967), 603–613. · Zbl 0149.26704 [50] Neumann, H.,On varieties of groups and their associated near-rings, Math. Zeitschr. 65 (1956), 36–69. · Zbl 0070.01905 [51] –,Varieties of Groups, Springer Verlag New York, 1967. · Zbl 0149.26704 [52] Neumann, P. M. and J. Wiegold,Schreier varieties of groups, Math. Zeitschr. 85 (1964), 392–400. · Zbl 0126.26901 [53] Novikov, P. S. and S. I. Adyan,On infinite periodic groups, Izvestyia Akad. Nauk S.S.S.R. Soc. Mat. 32 (1968), 212–244, 251–524, 709–731. [54] Oates, S. and M. B. Powell,Identical relations in finite groups, J. of Algebra 1, (1964), 11–39. · Zbl 0121.27202 [55] Olshanskii, A., to be published in Izvestia Akad. Nauk. S.S.S.R. [56] Perkins, P.,Bases for equational theories of semigroups, J. of Algebra XI (1969), 298–314. · Zbl 0186.03401 [57] Pierce, R. S.,Introduction to the Theory of Abstract Algebras, 1968, Holt, Rinehart and Winston, Inc. · Zbl 0159.57801 [58] Schein, B. M.,Homomorphisms and subdirect decompositions of semigroups, Pac. J. Math. 17 (1966), 530–547. · Zbl 0197.01603 [59] Schwabauer, R.,A note on commutative semigroups, Proc. Amer. Math. Soc. 20 (1969), 503–504. · Zbl 0179.04102 [60] –,Commutative semigroup laws, Proc. Amer. Math. Soc. 22 (1969), 591–595. · Zbl 0183.30802 [61] Tamura, T.,Attainability of systems of identities on semigroups, J. of Algebra 3 (1966), 261–276. · Zbl 0146.02702 [62] Tarski, A.,Equationally complete rings and relation algebras, Indag. Math. 18 (1956), 39–46. · Zbl 0073.24603 [63] –,Equational logic and equational theories of algebras, Contributions to Math. Logic (Colloquium, Hannover, 1966), 275–288. North Holland, Amsterdam, 1968. [64] Vaughan-Lee, M. R.,Uncountably many varieties of groups, to be published. · Zbl 0216.08401 [65] Yamada, M.,The structure of separative bands, Ph.D. dissertation, University of Utah, 1962. [66] Yaqub, A.,On the identities of certain algebras, Proc. Amer. Math. Soc. 8 (1957), 522–524. · Zbl 0079.04303 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.