×

zbMATH — the first resource for mathematics

On representation of linear operators on \(C_ 0\)(T,X). (English) Zbl 0225.47018

MSC:
47B38 Linear operators on function spaces (general)
46G10 Vector-valued measures and integration
47B06 Riesz operators; eigenvalue distributions; approximation numbers, \(s\)-numbers, Kolmogorov numbers, entropy numbers, etc. of operators
47A67 Representation theory of linear operators
47A05 General (adjoints, conjugates, products, inverses, domains, ranges, etc.)
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] Bartle R. G.: A general bilinear vector integral. Studia Math. 15 (1956), 337-352. · Zbl 0070.28102
[2] Bartle R. G., Dunford N., Schwartz J.: Weak compactness and vector measures. Canadian J. Math. 7 (1955), 289-305. · Zbl 0068.09301
[3] Batt J.: Integraldarstellungen linearer Transformationen und schwache Kompaktheit. Math. Annalen 174 (1967), 291-304. · Zbl 0157.21004
[4] Batt J., Berg J.: A theorem about weakly compact operators on the space of continuous functions on a compact Hausdorff space. Notices AMS, Vol. 15 n. 2 (1968), p. 363.
[5] Batt J.: On compactness and vector measures. Notices AMS Vol. 15 n. 3 (1968), p. 510,
[6] Bessaga C., Pelczyňski A.: On bases and unconditional convergence of series in Banach spaces. Studia Math. 17 (1958), 151-164. · Zbl 0084.09805
[7] Bochner S., Taylor A. E.: Linear functionals on certain spaces of abstractly-valued functions. Annals of Math. (2) 39 (1938), 913-944. · Zbl 0020.37101
[8] Bogdanowicz W. M.: Representations of linear continuous functional on the space \(C(X, Y)\) of continuous functions from compact \(X\) into locally convex \(Y\). Proc. Japan Acad. Vol. 42, n. 10 (1967), 1122-1127. · Zbl 0154.39501
[9] Brown C. C.: Über schwach-kompakte Operatoren in Banachraum. Math. Scand. 14 (1964), 45-64. · Zbl 0128.35203
[10] Dinculeanu N.: Vector measures. VEB Deutscher Verlag der Wissenschaften, Berlin 1966. · Zbl 0142.10502
[11] Dinculeanu N.: Contributions of Romanian mathematicians to the measure and integration theory. Revue Roum. Math. Pures Appl. 11 (1966), 1075-1102. · Zbl 0147.04301
[12] Dinculeanu N.: Integral representation of dominated operations on spaces of continuous vector fields. Math. Annalen 173 (1967), 147-180. · Zbl 0156.14902
[13] Dobrakov L.: On integration in Banach spaces, I. Czech. Math. J. 20 (95) (1970), 511 - 536. · Zbl 0215.20103
[14] Dunford N., Pettis B. J.: Linear operations on summable functions. Trans. Amer. Math. Soc. 47 (1940), 323-392. · Zbl 0023.32902
[15] Dunford N., Schwartz J.: Linear operators. part I, Interscience Publishers, New York 1958. · Zbl 0084.10402
[16] Edwards R. E.: Functional analysis, theory and applications. Holt, Rinehart and Winston, 1965. · Zbl 0182.16101
[17] Foias C., Singer I.: Some remarks on the representation of linear operators in spaces of vector valued continuous functions. Revue Roum. Math. Appl. 5 (1960), 729-752. · Zbl 0102.32302
[18] Foias C., Singer I.: Points of diffusion of linear operators and almost diffuse operators in spaces of continuous functions. Math. Zeitschrift 87 (1965), 434-450. · Zbl 0132.09904
[19] Grothendieck A.: Sur les applications lineaires faiblement compactes d’espaces du type \(C(K)\). Canadian J. Math. 5 (1953), 129-173. · Zbl 0050.10902
[20] Grothendieck A.: Produits tensoriels topologiques et espaces nucléaires. Memoirs of AMS no 16, Providence 1955. · Zbl 0123.30301
[21] Halmos P. R.: Measure theory. D. Van Nostrand, New York 1950. · Zbl 0040.16802
[22] Hille E., Phillips R.: Functional analysis and semi-groups. Amer. Math. Soc. Coll. Publ., Providence 1957. · Zbl 0078.10004
[23] Kluvánek I: Some generalizations of the Riesz-Kakutani theorem. (Russian), Czech. Math. J. 13 (88) (1963), 89-113.
[24] Kluvánek I: Characterization of Fourier-Stieltjes transforms of vector and operator valued measures. Czech. Math. J. 17 (92) (1967), 261-277. · Zbl 0177.18203
[25] Krasnosel’skij M. A.: About a class of linear operators in a space of abstract functions. (Russian), Matematičeskije zametky 2 (1967), 599-604. · Zbl 0162.19604
[26] Pelczyňski A.: Projections in certain Banach spaces. Studia Math. 19 (1960), 209-228.
[27] Pelczyňski A.: Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Polonaise 10 (1962), 641 - 648. · Zbl 0107.32504
[28] Phillips R. S.: On weakly compact subsets of a Banach space. Amer. J. Math. 65 (1943), 108-136 · Zbl 0063.06212
[29] Przeworska-Rolewicz D., Rolewicz S: Equations in linear spaces. Monografie Mat. Vol 47, PWN Warszawa 1968. · Zbl 0181.40501
[30] Singer I.: Linear functionals on the space of continuous mappings of a compact space into a Banach space. (Russian), Revue Roum. Math. 2 (1957), 301 - 315.
[31] Swong K.: A representation theory of continuous linear maps. Math. Annalen 155 (1964), 270-291. · Zbl 0197.10503
[32] Ulanov M. P.: Linear functionals on some spaces of abstract functions. (Russian), Sibirskij Mat. J. 9 (1968), 402-409.
[33] Ulanov M. P.: Vector valued set functions and representation of continuous linear transformations. (Russian), Sibirskij Mat. J. 9 (1968), 410-415.
[34] Whitley R.: An elementary proof of the Eberlein-Šmulian theorem. Math. Annalen 172 (1967), 116-118. · Zbl 0146.36301
[35] Batt J., Berg E. J.: Linear bounded transformations on the space of continuous functions. J. Funct. Anal. 4 (1969), 215-239. · Zbl 0183.13502
[36] Batt J.: Applications of the Orlicz-Pettis theorem to operator-valued measures and compact and weakly compact linear transformations on the space of continuous functions. Revue Roum. Math. Pures Appl. 14 (1969), 907-935. · Zbl 0189.43001
[37] Dobrakov. L: On integration in Banach spaces, II. Czech. Math. J. 20 (95) (1970), 680-695. · Zbl 0224.46050
[38] Howard J.: The comparison of an unconditionally converging operator. Studia Math. 33 (1969), 295-298. · Zbl 0189.43504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.