×

zbMATH — the first resource for mathematics

Stochastic differential equations in Hilbert space. (English) Zbl 0225.60028

MSC:
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
34F05 Ordinary differential equations and systems with randomness
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cabana, E, (), 49-79
[2] Curtain, R.F, Stochastic differential equations in Hilbert space, () · Zbl 0527.93037
[3] Doob, J.L, Stochastic processes, (1953), Wiley and Sons New York · Zbl 0053.26802
[4] Falb, P.L, Infinite dimensional filtering: the Kalman-bucy filter in Hilbert space, Information and control, 11, 102-137, (1967) · Zbl 0178.18902
[5] Gikhman, I.I; Skorokhod, A.V, Introduction to the theory of random processes, (1965), Izd-vo “Nauka” Moscow, (Russ.) · Zbl 0132.37902
[6] Scalora, F.S, Abstract martingale convergence theorems, Pacific J. math., 11, 347-374, (1961) · Zbl 0114.07702
[7] Skorokhod, A.V, Studies in the theory of random processes, (1965), Addison-Wesley Reading, Mass · Zbl 0146.37701
[8] Hille, E; Phillips, R.S, Functional analysis and semigroups, (1957), American Mathematical Society Providence, R.J · Zbl 0078.10004
[9] Kato, T, Abstract evolution equations of parabolic type in Banach and Hilbert spaces, Nagoya math. J., 19, 93-125, (1961) · Zbl 0114.06102
[10] Kato, T; Tanabe, H, On the abstract evolution equation, Osaka math. J., 14, 107-133, (1962) · Zbl 0106.09302
[11] {\scH. J. Kushner}, On the optimal control of a system governed by a linear parabolic equation with “white noise” inputs, to appear. · Zbl 0186.23404
[12] Lions, J.L, Équations differentielles, opérationelles, et problèmes aux limites, (1961), Springer-Verlag Berlin · Zbl 0098.31101
[13] Phillips, R.S, Perturbation theory for semi-groups of linear operators, Trans. amer. math. soc., 74, 199-221, (1954)
[14] Curtain, R.F; Falb, P.L, Ito’s lemma in infinite dimensions, J. math. anal. appl., 31, 434-448, (1970) · Zbl 0233.60051
[15] Dunford, N; Schwartz, J.T, Linear operators. I. general theory, (1958), Interscience New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.