×

zbMATH — the first resource for mathematics

Extension of the Birkhoff and von Neumann ergodic theorems to semigroup actions. (English) Zbl 0226.28009

MSC:
28D05 Measure-preserving transformations
28C10 Set functions and measures on topological groups or semigroups, Haar measures, invariant measures
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] A.P. Calderon , A. General Ergodic Theorem . Annals of Mathematics , t. 58 , 1953 , p. 182 - 191 . MR 55415 | Zbl 0052.11903 · Zbl 0052.11903
[2] J. Chatard , Application des propriétés de moyenne d’un groupe localement compact à la théorie ergodique , Université de Paris (mineographed). · Zbl 0215.18504
[3] N. Dunford and J. Schwartz , Linear Operator, Part I . Interscience , 1966 .
[4] J.L. Kelly , I. Namioka and coauthors, Linear Topological Spaces . Van Nostrand , 1963 . MR 166578 | Zbl 0115.09902 · Zbl 0115.09902
[5] B.J. Pettis , On Integration on Vector Spaces. Trans. Amer. Math. Soc. , t. 44 , 1938 , p. 277 - 304 . MR 1501970 | Zbl 0019.41603 | JFM 64.0371.02 · Zbl 0019.41603
[6] A.A. Tempelman , Ergodic Theorems for General Dynamic Systems . Soviet Math. Dokl. , t. 8 , 1967 , p. 1213 - 1216 . Zbl 0172.07303 · Zbl 0172.07303
[7] Norbert Wiener , The Ergodic Theorem . Duke Math. Journal , t. 5 , 1934 , p. 1 - 18 . Article | Zbl 0021.23501 | JFM 65.0516.04 · Zbl 0021.23501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.