×

zbMATH — the first resource for mathematics

Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients. (English) Zbl 0226.35019

MSC:
35G05 Linear higher-order PDEs
PDF BibTeX Cite
Full Text: DOI
References:
[1] Andersson, Ark. för Matematik 8 pp 277– (1970)
[2] Boman, Ark. för Matematik 5 pp 271– (1964)
[3] Boutet de Monvel, Ann. Inst. Fourier Grenoble 17 pp 295– (1967) · Zbl 0195.14403
[4] Ehrenpreis, Amer. J. Math. 82 pp 522– (1960)
[5] Holmgren, Öfversigt af Kongl. Vetenskaps-Akad. Förh. 58 pp 91– (1901)
[6] Linear Partial Differential Operators, Springer-Verlag, Berlin, Göttingen, Heidelberg, 1963. · Zbl 0108.09301
[7] On the singularities of solutions of partial differential equations., Comm. on Functional Analysis and Related Topics, Tokyo, 1969, pp. 31–40.
[8] Hörmander, Comm. Pure Appl. Math. 23 pp 329– (1970)
[9] Hörmander, Acta Math. 127 pp 79– (1971)
[10] Hörmander, Proc. Intl. Congr. Math., Nice (1970)
[11] John, Comm. Pure Appl. Math. 2 pp 209– (1949)
[12] Malgrange, C.R. Acad. Sci., Paris 254 pp 614– (1962)
[13] Analytic Functions and Classes of Infinitely Differentiable Functions, Rice Inst. Pamphlet No. 29:1, 1942. · Zbl 0060.15102
[14] Hyperfunctions and partial differential equations, Conf. on Functional Analysis and Related Topics, Tokyo, 1969, pp. 91–94.
[15] Théorème d’unicité de Holmgren et opérateurs hyperboliques dans l’espace des hyperfonctions, to appear in Anais da Academia Brasileira de Sciencias.
[16] Linear Partial Differential Equations with Constant Coefficients, Gordon and Breach, New York, 1966.
[17] Zachmanoglou, Arch. Rat. Mech. Anal. 23 pp 317– (1966)
[18] Zachmanoglou, Arch. Rat. Mech. Anal. 27 pp 373– (1968)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.