zbMATH — the first resource for mathematics

A note on \(B\)- and \(B_ r\)-completeness. (English) Zbl 0226.46007

46A30 Open mapping and closed graph theorems; completeness (including \(B\)-, \(B_r\)-completeness)
46A08 Barrelled spaces, bornological spaces
46A13 Spaces defined by inductive or projective limits (LB, LF, etc.)
Full Text: DOI EuDML
[1] Civin, P., Yood, B.: Quasi-reflexive spaces, Proc. Amer. Math. Soc.8, 906-911 (1957). · Zbl 0080.31204
[2] Dixmier, J.: Sur un théorème de Banach, Duke Math. J.15, 1057-1071 (1948). · Zbl 0031.36301
[3] Dulst, D. van: Barreledness of subspaces of countable codimension and the closed graph theorem, Comp. Math. (to appear). · Zbl 0231.46009
[4] Grothendieck, A.: Sur les espaces (F) et (DF), Summa Brasil. Math.3, 57-121 (1954). · Zbl 0058.09803
[5] Husain, T.: Locally convex spaces with theB(t)-property, Math. Ann.146, 413-422 (1962). · Zbl 0107.32402
[6] Köthe, G.: Topological vector spaces I, Berlin Heidelberg New York: Springer 1969. · Zbl 0179.17001
[7] Ptak, V.: Completeness and the open mapping theorem, Bull. Soc. Math. France86, 41-74 (1958). · Zbl 0082.32502
[8] Robertson, A. P., Robertson, W.: On the closed graph theorem, Proc. Glasgow Math. Assoc.3, 9-12 (1956). · Zbl 0073.08702
[9] Saxon, S., Levin, M.: Every countable-codimensional subspace of a barreled space is barreled, Proc. Amer. Math. Soc. (to appear). · Zbl 0212.14105
[10] Schaefer, H. H.: Topological vector spaces, New York: MacMillan 1966. · Zbl 0141.30503
[11] Summers, W. H.: Products of fully complete spaces, Bull. Amer. Math. Soc.75 (5) 1005 (1969). · Zbl 0179.45404
[12] Valdivia, M.: Absolutely convex sets in barreled spaces, Ann. Inst. Fourier, Grenoble21, 2 (1971) (to appear). · Zbl 0205.40904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.