×

zbMATH — the first resource for mathematics

Potentiel markovien récurrent des chaînes de Harris. (Recurrent Markov potential of Harris chains). (English) Zbl 0226.60084

MSC:
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
60J45 Probabilistic potential theory
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] A. BRUNEL, Chaînes abstraites de Markov vérifiant une condition de orey, à paraître. · Zbl 0203.50305
[2] M. DUFLO, Opérateurs potentiels des chaînes et des processus de Markov irréductibles, Bull. Soc. Math., 98 (1970), 127-163. · Zbl 0205.44803
[3] S. FOGUEL, Ergodic theory of Markov process, Van Nostrand, (1970).
[4] T. E. HARRIS, The existence of stationary measures for certain Markov processes, Third Berkeley Symp. Math Stat., Proba. II (1956), 113-124. · Zbl 0072.35201
[5] S. HOROWICZ, Transitions probabilities and contractions of L∞ (à paraître).
[6] G. A. HUNT, La théorie du potentiel et LES processus récurrents. Ann. Inst. Fourier, 15 (1965), 3-12. · Zbl 0141.15602
[7] N. JAIN et B. JAMISON, Contributions to Doeblin’s theory of Markov processes, Z. für Wahrsch., 8 (1967), 19-40. · Zbl 0201.50404
[8] M. METIVIER, Existence of an invariant measure and an Ornstein ergodic theorem., Ann. Math. Stat., 40 (1969), 79-96. · Zbl 0214.17102
[9] P. A. MEYER, Équation de Poisson. Séminaire de Strasbourg, 1969-1970.
[10] J. NEVEU, Potentiel markovien discret, Ann. Fac. Sc. Clermont, 24 (1964), 37-89.
[11] J. NEVEU, Bases mathématiques des probabilités, Masson, 2e édition (1970). · Zbl 0203.49901
[12] J. NEVEU, Potentiel markovien récurrent pour une chaîne de harris, C.R. Acad. Sci. Paris, 272 (1971), 270-272. · Zbl 0215.25804
[13] S. OREY, Lecture notes for Markov chain transition probability functions. Univ. of Minnesota, Minneapolis (1968) 92 p. · Zbl 0295.60054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.