Numerically stable deflation of Hessenberg and symmetric tridiagonal matrices. (English) Zbl 0226.65028


65F30 Other matrix algorithms (MSC2010)
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
Full Text: DOI


[1] D. Corneil,Eigenvalues and Orthogonal Eigenvectors of Real Symmetric Matrices, Department of Computer Science, University of Toronto, August 1965.
[2] G. H. Golub and W. Kahan,Calculating the Singular Values and Pseudo-Inverse of a Matrix, J. SIAM Numer. Anal 2, 205–224 (1965). · Zbl 0194.18201
[3] H. Rutishauser, Deflation bei Bandmatrizen, Z. Angew. Math. Phys. 10, 314–319 (1959). · Zbl 0086.11002 · doi:10.1007/BF01600609
[4] H. Rutishauser,On Jacobi Rotation Patterns, American Mathematical Society, Proceedings of Symposia in Applied Mathematics 15, 219–239 (1963). · doi:10.1090/psapm/015/0160321
[5] H. R. Schwarz,Tridiagonalization of a Symmetric Band Matrix, Numer. Math. 12, 231–241 (1968). · Zbl 0165.50201 · doi:10.1007/BF02162505
[6] J. H. Wilkinson,Error Analysis of Eigenvalue Techniques Based on Orthogonal Transformations, Journal ACM 19, 162–195 (1962). · Zbl 0108.29703
[7] J. H. Wilkinson,The Algebraic Eigenvalue Problem, Oxford U. Press, 1965. · Zbl 0258.65037
[8] P. A. Businger,SSEV and HSEV–Selected Eigenvalues and Eigenvectors of Real Symmetric and Complex Hermitian Matrices, Program write-up available from the author.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.