×

zbMATH — the first resource for mathematics

Triangular elements in the finite element method. (English) Zbl 0226.65073

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65N99 Numerical methods for partial differential equations, boundary value problems
35J25 Boundary value problems for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Shmuel Agmon, Lectures on elliptic boundary value problems, Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. · Zbl 0142.37401
[2] J. H. Argyris, I. Fried & D. W. Scharpf, ”The tuba family of plate elements for the matrix displacement method,” Aeronautical J. Roy. Aeronautical Soc., v. 72, 1968, pp. 618-623.
[3] K. Bell, Analysis of Thin Plates in Bending Using Triangular Finite Elements, The Technical University of Norway, Trondheim, 1968.
[4] K. Bell, ”A refined triangular plate bending finite element,” Internat. J. Numer. Methods in Engrg., v. 1, 1969, pp. 101-122.
[5] I. S. Berezin & N. P. Židkov, Computing Methods. Vol. I, 2nd ed., Fizmatgiz, Moscow, 1962; English transl., of 1st ed., Pergamon Press, New York, 1965. MR 30 #4372; MR 31 #1756.
[6] W. Bosshard, ”Ein neues, vollverträgliches endliches Element für Plattenbiegung,” Abh. Int. Verein. Brückenbau and Hochbau, Zürich, v. 28, 1968, pp. 27-40.
[7] J. H. Bramble and S. R. Hilbert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation, SIAM J. Numer. Anal. 7 (1970), 112 – 124. · Zbl 0201.07803 · doi:10.1137/0707006 · doi.org
[8] Jean Céa, Approximation variationnelle des problèmes aux limites, Ann. Inst. Fourier (Grenoble) 14 (1964), no. fasc. 2, 345 – 444 (French). · Zbl 0127.08003
[9] R. Courant, Variational methods for the solution of problems of equilibrium and vibrations, Bull. Amer. Math. Soc. 49 (1943), 1 – 23. · Zbl 0063.00985
[10] J. J. Goël, List of Basic Functions for Numerical Utilisation of Ritz’s Method. Application to the Problem of the Plate, École Polytechnique Féderale, Lausanne, 1969.
[11] Jan Kadlec, The regularity of the solution of the Poisson problem in a domain whose boundary is similar to that of a convex domain, Czechoslovak Math. J. 14 (89) (1964), 386 – 393 (Russian, with English summary). · Zbl 0166.37703
[12] J. Kratochvíl, A. Ženíšek & M. Zlámal, ”A simple algorithm for the stiffness matrix of triangular plate bending finite elements,” Numer. Methods in Engineering. (To appear.)
[13] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968 (French). · Zbl 0212.43801
[14] J. Nitsche, Lineare Spline-Funktionen und die Methoden von Ritz für elliptische Randwertprobleme, Arch. Rational Mech. Anal. 36 (1970), 348 – 355 (German). · Zbl 0192.44503 · doi:10.1007/BF00282271 · doi.org
[15] M. J. Turner, R. W. Clough, H. C. Martin & L. J. Topp, ”Stiffness and deflection analysis of complex structures,” J. Aeronautical Sci., v. 23, 1956, pp. 805-823. · Zbl 0072.41003
[16] M. Visser, The Finite Element Method in Deformation and Heat Conduction Problems, Delft, 1968.
[17] Alexander Ženíšek, Interpolation polynomials on the triangle, Numer. Math. 15 (1970), 283 – 296. · Zbl 0216.38901 · doi:10.1007/BF02165119 · doi.org
[18] O. C. Zienkiewicz, The Finite Element Method in Structural and Continuum Mechanics, McGraw-Hill, New York, 1967. · Zbl 0189.24902
[19] Miloš Zlámal, On the finite element method, Numer. Math. 12 (1968), 394 – 409. · Zbl 0176.16001 · doi:10.1007/BF02161362 · doi.org
[20] M. Zlámal, ”A finite element procedure of the second order of accuracy,” Numer. Math., v. 16, 1970, pp. 394-402. · Zbl 0209.18002
[21] A. C. Felippa, Refined Finite Element Analysis of Linear and Nonlinear TwoDimensional Structures, SESM Report No. 66-22, University of California, Berkeley, Calif., 1967.
[22] E. Anderheggen, Programme zur Methode der finiten Elemente, Institut für Baustatik, Eidgenössische Technische Hochschule, Zürich, 1969.
[23] G. R. Cowper, E. Kosko, G. M. Lindberg & M. D. Olson, ”Formulation of a new triangular plate bending element,” C.A.S.I. Trans., v. 1, 1968, pp. 86-90.
[24] G. R. Cowper, E. Kosko, G. M. Lindberg & M. D. Olson, ”Static and dynamic applications of a high-precision triangular plate bending element,” AIAA J., v. 7, 1969, pp. 1957-1965.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.