Some remarks about the associated envelope of a Lie algebra. (English. Russian original) Zbl 0227.22020

Funct. Anal. Appl. 1, 91-102 (1967); translation from Funkts. Anal. Prilozh. 1, No. 2, 1-14 (1967).


22E60 Lie algebras of Lie groups
17B35 Universal enveloping (super)algebras
Full Text: DOI


[1] I. M. Gel’fand and G. E. Shilov, Theory of Generalized Functions [in Russian], Moscow, Fizmatgiz, No. 1 (1958). · Zbl 0091.11103
[2] F. A. Berezin, On one representation of operators with the aid of functionals, Trudy Mosk. Matem. O-va, 17, 118-184 (1967).
[3] I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Derivatives [in Russian], Moscow, Fizmatgiz (1963). · Zbl 0102.24703
[4] I. M. Gel’fand, Center of an infinitesimal group ring, Matem. sb.,16, No. 1 (1950).
[5] F. A. Berezin, Laplace operators on semisimple Lie groups and certain symmetric spaces, UMN, 12, No. 1, 152-156 (1957).
[6] F. A. Berezin and I. M. Gel’fand, Certain remarks on the theory of spherical functions on symmetric Riemann manifolds, Trudy Mosk. Matem. O-va,5, 311-351 (1956).
[7] F. A. Berezin, Laplace operators on semisimple Lie groups, Trudy Mosk. Matem. O-va,6, 371-463 (1957). · Zbl 0091.28201
[8] Harish-Chandra, The characters of semisimple Lie groups, Trans. Amer. Math. Soc.,83, 98-163 (1956). · Zbl 0072.01801
[9] Harish-Chandra, Spherical functions on a semisimple Lie group I, Amer. J. Math,80 (1958). · Zbl 0093.12801
[10] Harish-Chandra, On some applications of the universal enveloping algebra of a semisimple Lie group algebra, Trans. Amer. Math. Soc.,70, 28-96 (1951). · Zbl 0042.12701
[11] A. M. Perelomov and V. S. Popov, Casimir operators for the groups U(n) and SU (n), Yadernaya Fizika,3, No. 5, 924-931
[12] A. M. Perelomov and V. S. Popov, Casimir operators for orthogonal groups, Yadernaya Fizika,3, No. 6, 1127-1134.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.