zbMATH — the first resource for mathematics

Harnack’s inequality for elliptic differential equations on minimal surfaces. (English) Zbl 0227.35021

35B40 Asymptotic behavior of solutions to PDEs
35J20 Variational methods for second-order elliptic equations
26D10 Inequalities involving derivatives and differential and integral operators
Full Text: DOI EuDML
[1] Bernstein, S.: Über ein geometrisches Theorem und seine Anwendung auf die partiellen Differentialgleichungen vom elliptischen Typus. Mat. Zeit.26, 551-558 (1927). · JFM 53.0670.01 · doi:10.1007/BF01475472
[2] Bombieri, E., De Giorgi, E., Giusti, E.: Minimal cones and the Bernstein problem. Inventiones math.7, 243-268 (1969). · Zbl 0183.25901 · doi:10.1007/BF01404309
[3] ??, Miranda, M.: Una maggiorazione a priori relativa alle ipersuperfici minimali non parametriche. Arch. Rat. Mech. and Anal.32, 255-267 (1969). · Zbl 0184.32803 · doi:10.1007/BF00281503
[4] De Giorgi, E.: Frontiere orientate di misura minima. Sem. Mat. Scuola Norm. Sup. Pisa-A.A. 1960/1961. · Zbl 0296.49031
[5] Federer, H.: Geometric measure theory. Berlin-Heidelberg-New York: Springer 1969. · Zbl 0176.00801
[6] ?: The singular set of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimension. Bull. A.M.S.76, 767-771 (1970). · Zbl 0194.35803 · doi:10.1090/S0002-9904-1970-12542-3
[7] Giusti, E.: Superfici cartesiane di area minima. Rend. Sem. Mat. Fis. Milano (to appear). · Zbl 0219.53008
[8] John, F., Nirenberg, L.: On functions of bounded mean oscillation. Comm. Pure Appl. Math.14, 415-426 (1961). · Zbl 0102.04302 · doi:10.1002/cpa.3160140317
[9] Miranda, M.: Superfici minime con ostacoli. Annali Univ. Ferrara. Rend. Sem. Mat. Ferrara (to appear).
[10] Moser, J.: On Harnack’s theorem for elliptic differential equations. Comm. Pure Appl. Math.14, 577-591 (1961). · Zbl 0111.09302 · doi:10.1002/cpa.3160140329
[11] Reifenberg, E. R.: Solution of the Plateau problem form-dimensional surfaces of varying topological type. Acta Math.104, 1-92 (1960). · Zbl 0099.08503 · doi:10.1007/BF02547186
[12] Simons, J.: Minimal varieties in riemannian manifolds. Annals of Math.88, 62-105 (1968). · Zbl 0181.49702 · doi:10.2307/1970556
[13] Trudinger, N. S.: On embedding into Orlicz spaces and some applications. J. Math. and Mech.17, 473-483 (1967). · Zbl 0163.36402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.