An analytic construction of degenerating curves over complete local rings. (English) Zbl 0228.14011


14H25 Arithmetic ground fields for curves
11G07 Elliptic curves over local fields
14H10 Families, moduli of curves (algebraic)
14G20 Local ground fields in algebraic geometry
Full Text: Numdam EuDML


[1] F. Bruhat AND J. Tits [B-T] Groupes algébriques semi-simple sur un corps local , To appear in Publ. I.H.E.S. · Zbl 0657.20040
[2] P. Deligne AND D. Mumford [D-M] The irreducibility of the space of curves of given genus . Publ. I.H.E.S. 36 (1969) 75-109. · Zbl 0181.48803
[3] A. Grothendieck AND J. Dieudonné [EGA] Eléments de la geométrie algébrique , Publ. I.H.E.S., 4, 8, 11, etc. · Zbl 0118.36206
[4] H. Grauert AND R. Remmert [G-R] Forthcoming book on the foundations of global p-adic function theory . · Zbl 0662.32001
[5] Y. Ihara [I] On discrete subgroups of the 2 x 2 projective linear group over p-adic fields , J. Math. Soc. Japan 18 (1966) 219-235. · Zbl 0158.27702
[6] S. Lichtenbaum [L] Curves over discrete valuation rings , Amer. J. Math. 90 (1968) 380-000. · Zbl 0194.22101
[7] D. Mumford [M1] Abelian varieties , Oxford Univ. Press, 1970. · Zbl 0223.14022
[8] B. Maskit [Ma] A characterization of Schottky groups , J. d’Analyse 19 (1967) 227-230. · Zbl 0168.06201
[9] J. Mccabe [Mc] Harvard Univ. thesis on P-adic theta functions , (1968) unpublished.
[10] H. Morikawa [Mo] Theta functions and abelian varieties over valuation rings , Nagoya Math. J. 20 (1962). M. Raynaud · Zbl 0115.39001
[11] Modèles de Néron , C.R. Acad. Sci., Paris 262 (1966) 413-414. J.-P. Serre [S] Groupes Discrets, Mimeo . notes from course at College de France, 1968-69.
[12] I. Šafarevitch [Š] Lectures on minimal models , Tata Institute Lecture Notes, Bombay, 1966.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.