×

zbMATH — the first resource for mathematics

On some Bruhat decomposition and the structure of the Hecke rings of \(p\)-adic Chevalley groups. (English) Zbl 0228.20015

MSC:
20E28 Maximal subgroups
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] A. Borel andJ. de Siebenthal, Les sous-groupes fermés de rang maximum des groupes de Lie clos,Comm. Math. Helv., 23 (1949), 200–221. · Zbl 0034.30701 · doi:10.1007/BF02565599
[2] R. Bott, An application of the Morse theory to the topology of Lie groups,Bull. Soc. Math. France, 84 (1956), 251–282. · Zbl 0073.40001
[3] F. Bruhat, Sur les représentations des groupes classiques p-adiques, I, II,Amer. J. Math., 83 (1961), 321–338, 343–368. · Zbl 0107.02504 · doi:10.2307/2372958
[4] F. Bruhat, Sur les sous-groupes compacts maximaux des groupes semi-simples p-adiques,Colloque sur la théorie des groupes algébriques, Bruxelles (1962), 69–76.
[5] F. Cartan, La géométrie des groupes simples,Ann. Mat. Pur. Appl., 4 (1927), 209–256. · JFM 53.0392.03 · doi:10.1007/BF02409989
[6] C. Chevalley, Sur certains groupes simples,Tôhoku Math. J., 7 (1955), 14–66. · Zbl 0066.01503 · doi:10.2748/tmj/1178245104
[7] O. Goldman andN. Iwahori, The spaces of p-adic norms,Acta Math., 109 (1963), 137–177. · Zbl 0133.29402 · doi:10.1007/BF02391811
[8] O. Goldman andN. Iwahori,On the structure of Hecke rings associated to general linear groups over p-adic fields, to appear. · Zbl 0133.29402
[9] H. Hijikata,Maximal invariant orders of an involutive algebra over a local field, to appear.
[10] N. Iwahori, On the structure of a Hecke ring of a Chevalley group over a finite field, to appear, inJ. Faculty of Sci., Univ. of Tokyo, 10 (1964). · Zbl 0135.07101
[11] T. Ono, Sur les groupes de Chevalley,J. Math. Soc. Japan, 10 (1958), 307–313. · Zbl 0085.01705 · doi:10.2969/jmsj/01030307
[12] I. Satake, On spherical functions over p-adic fields,Proc. Japan Academy, 38 (1962), 422–425. · Zbl 0116.02303 · doi:10.3792/pja/1195523281
[13] Séminaire “Sophus Lie ”, Paris, 1954–1955.
[14] E. Stiefel, Über eine Beziehung zwischen geschlossenen Lieschen Gruppen und diskontinuierlichen Bewegungsgruppen euklidischer Räume und ihre Anwendung auf die Aufzählung der einfachen Lie’schen Gruppen,Comm. Math. Helv., 14 (1941), 350–379. · Zbl 0026.38603 · doi:10.1007/BF02565625
[15] T. Tamagawa, On the \(\zeta\)-functions of a division algebra,Ann. of Math., 77 (1963), 387–405. · Zbl 0222.12018 · doi:10.2307/1970221
[16] J. Tits, Théorème de Bruhat et sous-groupes paraboliques,C. R. Paris, 254 (1962), 2910–2912. · Zbl 0105.02201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.