×

On spline functions determined by singular self-adjoint differential operators. (English) Zbl 0228.41003


MSC:

41A15 Spline approximation
47E05 General theory of ordinary differential operators
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agmon, S., Lectures on Elliptic Boundary Value Problems (1965), Van Nostrand: Van Nostrand Princeton, NJ · Zbl 0151.20203
[2] Ciarlet, P. G.; Natterer, F.; Varga, R. S., Numerical methods of high-order accuracy for singular nonlinear boundary value problems, Numer. Math., 15, 87-99 (1970) · Zbl 0211.19103
[3] Dailey, J. W., Approximation by Spline-Type Functions and Related Problems, (Dissertation (1969), Case Western Reserve University: Case Western Reserve University Cleveland, Ohio) · Zbl 0244.65075
[4] Golomb, M., Splines, \(n\)-Widths and Optimal Approximations, (M.R.C. Technical Summary Report 784 (1967), University of Wisconsin: University of Wisconsin Madison, WI) · Zbl 0142.31002
[5] Golomb, M.; Jerome, J. W., Linear ordinary equations with boundary conditions on arbitrary point sets, Trans. Amer. Math. Soc., 153, 235-264 (1971) · Zbl 0238.34027
[6] Halperin, I., Theory of Distributions (1952), University of Toronto Press: University of Toronto Press Toronto · Zbl 0046.12603
[7] Jerome, J. W.; Schumaker, L. L., On Lg-splines, J. Approximation Theory, 2, 29-49 (1969) · Zbl 0172.34501
[8] Jerome, J. W.; Varga, R. S., Generalizations of spline functions and applications to nonlinear boundary value and eigenvalue problems, (Greville, T. N.E, Theory and Applications of Spline Functions (1969), Academic Press: Academic Press New York) · Zbl 0188.13004
[9] Lucas, T., A generalization of \(L\)-splines, Numer. Math., 15, 359-370 (1970) · Zbl 0214.41303
[10] Riesz, F.; -Nagy, B. Sz, Functional Analysis (1955), Ungar: Ungar New York
[11] Schultz, M. H., Elliptic spline functions and the Rayleigh-Ritz Galerkin method, Math. Comp., 24, 65-80 (1970) · Zbl 0222.34012
[12] J. W. JeromeInt. Ser. Numer. Math.; J. W. JeromeInt. Ser. Numer. Math. · Zbl 0256.34014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.