×

On Reissner’s variational theorem for boundary values in linear elasticity. (English) Zbl 0228.73028

MSC:

74B05 Classical linear elasticity
74S30 Other numerical methods in solid mechanics (MSC2010)
74P10 Optimization of other properties in solid mechanics
74B99 Elastic materials
74H99 Dynamical problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] E. Reissner: On some variational theorems in elasticity. Problems of Continuum Mechanics, 370-381. Contributions in honor of 70th birthday of N. I. Muschelišvili, 1961.
[2] D. Rüdiger: Zur Trefftzschen Methode in der Elastizitätstheorie. Appl. Mech., Proc. XIth internát. Congr. appl. Mech., Munich 1964, 350-354, 1966.
[3] К. Ф. Черных: Линейная теория оболочек. ч. II, гл. IX., Издат. Ленинград, унив., 1964. · Zbl 1117.65300
[4] I. Hlaváček: Derivation of non-classical variational principles in the theory of elasticity. Aplikace matematiky 12, 1967, 1, 15-29.
[5] I. Hlaváček: Variational principles in the linear theory of elasticity for general boundary conditions. Aplikace matematiky 12, 1967, 6, 425 - 448. · Zbl 0153.55401
[6] I. Hlaváček J. Nečas: On inequalities of Korn’s type. II. Applications to linear elasticity. Archive for Ratl. Mech. Anal. 36, 1970, 312-334. · Zbl 0193.39002 · doi:10.1007/BF00249519
[7] С. Г. Михлин: Проблема минимума квадратичного функционала. Гостехиздат, 1952. · Zbl 1145.11324
[8] С. Г. Михлин: Вариационные методы в математической физике. Москва 1957. · Zbl 0995.90594 · doi:10.1287/mnsc.3.4.403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.