zbMATH — the first resource for mathematics

On the existence of sub-Markovian resolvents. (English) Zbl 0229.31014

31D05 Axiomatic potential theory
46E27 Spaces of measures
Full Text: DOI EuDML
[1] Hirsch, F.: Familles résolvantes, générateurs, cogénérateurs, potentiels. To appear in the Annales de l’lnst. Fourier 1972.
[2] Hunt, G. A.: Markoff processes and potentials II. III. Jour. Math.1, 316-369 (1957). · Zbl 0100.13804
[3] Kondo, R.: On potential kernels satisfying the complete maximum principle. Proc. Japan Acad.44, 193-197 (1968). · Zbl 0162.48703 · doi:10.3792/pja/1195521242
[4] Lion, G.: Familles d’opérateurs et frontières en théorie du potentiel. Ann. Inst-Fourier16 (2), 389-453 (1966). · Zbl 0143.34502
[5] Meyer, P. A.: Probability and potentials. Waltham. Mass.: Blaisdell Publishing Company 1966. · Zbl 0138.10401
[6] Meyer, P. A.: Caracterization des noyaux potentiels des semigroupes discrets. Ann. Inst. Fourier16 (2), 225-340 (1966).
[7] Mokobodzki, G., Sibony, D.: Cônes de fonctions et théorie du potentiel II. Résolvantes et semi-groupes subordonnés à un cône de fonctions. Séminaire de théorie du potentiel (Brelot, Choquet, Deny), Institut Henri Poincaré, Paris, 11e année, 1966/67, exposé 9, 29 pages.
[8] Taylor, J. C.: Strict potentials and Hunt processes. Inventiones math.16, 249-259 (1972). · Zbl 0225.31013 · doi:10.1007/BF01425497
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.