Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. (On a variational principle for solving Dirichlet problems less boundary conditions using subspaces). (German) Zbl 0229.65079


65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI


[1] S. Agmon, Lectures on Elliptic Boundary Value Problems. D. Van Nostrand Comp., Inc. Princeton, New Jersey, New York 1965. · Zbl 0142.37401
[2] J. P. Aubin, Approximation des espaces de distributions et des opérateurs diffeérentiels. Bull. Soc. math. France. Mémoire12 1967 139p.
[3] I. Babuska, Numerical Solution of Boundary Value Problems by the Perturbated Variational Principle. Techn. Note BN-624, University of Maryland, 1969.
[4] I. Babuska, Error-Bounds for Finite Element Method. Techn. Note BN-630. Univ. of Maryland, 1969.
[5] I. Babuska, Approximation by Hill Functions. To appear.
[6] J. H. Bramble andA. H. Schatz, Rayleigh-Ritz-Galerkin Methods for Dirichlet’s Problem Using Subspaces Without Boundary conditions. To appear Comm. p. appl. Math.23 (1970) 653–675. · Zbl 0204.11102 · doi:10.1002/cpa.3160230408
[7] T. Miyoshi, On the Convergence of Rith-Galerkin’s Method. Publ. Res. Inst. Math. Sci. Ser. A4 (1968/69), 149–177. · Zbl 0276.65053 · doi:10.2977/prims/1195195265
[8] J. Nitsche, Ein Kriteriums für die Quasi-Optimalität des Ritzschen Verfahrens. Numer. Math.11 (1968) 346–384. · Zbl 0175.45801 · doi:10.1007/BF02166687
[9] J. Nitsche, Lineare Spline-Funktionen und die Methoden von Ritz für elliptische Randwertprobleme. Arch. for Rat. Mech. and Anal.36 (1970) 348–355. · Zbl 0192.44503
[10] B. L. Rvachev andL. I. Shklyarov On the Application of the Bubnov-Galerkin Method to the Solution of Boundary Problems for Domains of Complex Shape. Diff. Equ.1 (1965) 1211–1216.
[11] M. Schechter, OnL p Estimates and Regularitys. Math. Scand.13 (1963) 47–69. · Zbl 0131.09505
[12] M. H. Schultz, Rayleigh-Ritz-Galerkin Methods for Multidimensional Problems. SIAM J. Numer. Anal.6 (1969) 523–538. · Zbl 0211.19302 · doi:10.1137/0706047
[13] M. Zlamal, On the Finite Element Method Numer. Math.12 (1968) 394–409. · Zbl 0176.16001 · doi:10.1007/BF02161362
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.