×

zbMATH — the first resource for mathematics

Local reflexivity and (p,q)-summing maps. (English) Zbl 0231.46033

MSC:
46B10 Duality and reflexivity in normed linear and Banach spaces
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Klee, V.: On certain intersection properties of convex sets. Canad. J. Math.3, 272-275 (1951). · Zbl 0042.40701 · doi:10.4153/CJM-1951-031-2
[2] Lindenstrauss, J., Rosenthal, H.: The & p spaces. Israel J. Math.7, 325-349 (1969). · Zbl 0205.12602 · doi:10.1007/BF02788865
[3] Pietsch, A.: Quasinukleare Abbildungen in normierten Räumen. Math. Annalen165, 79-90 (1966). · Zbl 0171.12101 · doi:10.1007/BF01351669
[4] Pietsch, A.: Absolutp-summierende Abbildungen in normierten Räumen. Studia Math.28, 333-353 (1967). · Zbl 0156.37903
[5] Pietsch, A.: Adjungierte normierte Operatoren ideale. Math. Nachrichten48, 189-211 (1971). · Zbl 0233.46084 · doi:10.1002/mana.19710480114
[6] Schwarz, U.: Adjungierte Operatoren ideale (Dissertation, Jena 1970).
[7] Amemiya, I., Shiga, K.: On tensor products of Banach spaces. Kodai Math. Sem. Reports9, 161-178 (1957). · Zbl 0079.32404 · doi:10.2996/kmj/1138843934
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.