×

A new fixed point theorem and its application. (English) Zbl 0231.47030


MSC:

47H10 Fixed-point theorems
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
Full Text: DOI

References:

[1] M. Altman, A fixed point theorem in Hilbert space, Bull. Acad. Polon. Sci. Cl. III. 5 (1957), 19 – 22, III (English, with Russian summary). · Zbl 0077.31902
[2] L. P. Belluce and W. A. Kirk, Fixed-point theorems for certain classes of nonexpansive mappings, Proc. Amer. Math. Soc. 20 (1969), 141 – 146. · Zbl 0165.16801
[3] Felix E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041 – 1044. · Zbl 0128.35801
[4] Felix E. Browder, Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc. 74 (1968), 660 – 665. · Zbl 0164.44801
[5] Gabriele Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84 – 92 (Italian). · Zbl 0064.35704
[6] Massimo Furi and Alfonso Vignoli, On \?-nonexpansive mappings and fixed points, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 48 (1970), 195 – 198 (English, with Italian summary). · Zbl 0197.11806
[7] Dietrich Göhde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1965), 251 – 258 (German). · Zbl 0127.08005 · doi:10.1002/mana.19650300312
[8] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004 – 1006. · Zbl 0141.32402 · doi:10.2307/2313345
[9] M. A. Krasnosel\(^{\prime}\)skiĭ, Two remarks on the method of successive approximations, Uspehi Mat. Nauk (N.S.) 10 (1955), no. 1(63), 123 – 127 (Russian).
[10] R. D. Nussbaum, The fixed point index and fixed point theorems for k-set-contractions, Ph.D. Thesis, University of Chicago, Chicago, Ill., 1969. · Zbl 0174.45402
[11] Roger D. Nussbaum, The fixed point index for local condensing maps, Ann. Mat. Pura Appl. (4) 89 (1971), 217 – 258. · Zbl 0226.47031 · doi:10.1007/BF02414948
[12] W. V. Petryshyn, Structure of the fixed points sets of \?-set-contractions, Arch. Rational Mech. Anal. 40 (1970/1971), 312 – 328. · Zbl 0218.47028 · doi:10.1007/BF00252680
[13] W. V. Petryshyn, Note on the structure of fixed point sets of 1-set-contractions, Proc. Amer. Math. Soc. 31 (1972), 189 – 194. · Zbl 0231.47031
[14] W. V. Petryshyn, Fixed point theorems for various classes of 1-set-contractive and 1-ball- contractive mappings in Banach spaces (in preparation). · Zbl 0277.47033
[15] Erich Rothe, Zur Theorie der topologischen Ordnung und der Vektorfelder in Banachschen Räumen, Compositio Math. 5 (1938), 177 – 197 (German). · Zbl 0018.13304
[16] B. N. Sadovskiĭ, On a fixed point principle, Funkcional. Anal. i Priložen. 1 (1967), no. 2, 74 – 76 (Russian). · Zbl 0165.49102
[17] J. Schauder, Der Fixpunktsatz in Funktionalräumen, Studia Math. 2 (1930), 171-180. · JFM 56.0355.01
[18] J. R. L. Webb, Remarks on \?-set contractions, Boll. Un. Mat. Ital. (4) 4 (1971), 614 – 629 (English, with Italian summary). · Zbl 0219.47058
[19] P. P. Zabreĭko and M. A. Krasnosel\(^{\prime}\)skiĭ, A way of obtaining new fixed-point principles, Dokl. Akad. Nauk SSSR 176 (1967), 1233 – 1235 (Russian).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.