×

zbMATH — the first resource for mathematics

Borel measurable mappings for nonseparable metric spaces. (English) Zbl 0232.28007

MSC:
28C15 Set functions and measures on topological spaces (regularity of measures, etc.)
28A20 Measurable and nonmeasurable functions, sequences of measurable functions, modes of convergence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Banach, Über analytisch darstellbare Operationen in abstrakten Räumen, Fund. Math. 17 (1931), 281-295. · Zbl 0003.02801
[2] R. H. Bing, Metrization of topological spaces, Canadian J. Math. 3 (1951), 175 – 186. · Zbl 0042.41301
[3] A. G. El\(^{\prime}\)kin, \?-sets in complete metric spaces, Dokl. Akad. Nauk SSSR 175 (1967), 517 – 520 (Russian).
[4] F. Hausdorff, Mengenlehre, de Gruyter, Berlin, 1937; English transl., Chelsea, New York, 1957. MR 19, 111. · Zbl 0060.12401
[5] John L. Kelley, General topology, D. Van Nostrand Company, Inc., Toronto-New York-London, 1955. · Zbl 0066.16604
[6] K. Kuratowski, Topology. Vol. I, New edition, revised and augmented. Translated from the French by J. Jaworowski, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966. · Zbl 0158.40901
[7] -, Quelques problèmes concernant les espaces métriques non-séparables, Fund. Math. 25 (1935), 535. · JFM 61.0221.02
[8] -, Sur le prolongement de l’homéomorphie, C. R. Acad. Sci. Paris 197 (1933), 1090. · JFM 59.0268.02
[9] H. Lebesgue, J. Math. 1 (1905), 168.
[10] D. Montgomery, Non-separable metric spaces, Fund. Math. 25 (1935), 527-534. · JFM 61.0221.01
[11] Kiiti Morita, Normal families and dimension theory for metric spaces, Math. Ann. 128 (1954), 350 – 362. · Zbl 0057.39001 · doi:10.1007/BF01360142 · doi.org
[12] W. Sierpiński, General topology, 2nd ed., Univ. of Toronto Press, Toronto, 1956. · JFM 60.0502.01
[13] A. H. Stone, Non-separable Borel sets, Rozprawy Mat. 28 (1962), 41. · Zbl 0111.35201
[14] A. H. Stone, On \?-discreteness and Borel isomorphism, Amer. J. Math. 85 (1963), 655 – 666. · Zbl 0117.40103 · doi:10.2307/2373113 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.