zbMATH — the first resource for mathematics

Zeta functions with a zero at \(s = \frac12\). (English) Zbl 0233.12006

11R42 Zeta functions and \(L\)-functions of number fields
Full Text: DOI EuDML
[1] Armitage, J. V.: On a theorem of Hecke in number fields and function fields. Inventiones math.2, 238-246 (1967). · Zbl 0143.06304
[2] Cassels, J. W. S., Fröhlich, A. (eds.): Algebraic number theory. London and New York: Academic Press 1967. · Zbl 0153.07403
[3] Curtis, C., Reiner, I.: Representation theory of finite groups and associative algebras. New York: Wiley 1966. · Zbl 1093.20003
[4] Fröhlich, A.: Some topics in the theory of module conductors. Oberwolfach reports,2, 59-82 (1965).
[5] Hasse, H.: Zur Theorie der abstrakten elliptischen Funktionenkörper III. Journ. f. Math.175, 193-208 (1936). · Zbl 0014.24902
[6] Hasse, H.: Artinsche Führer, ArtinscheL-Funktionen und Gausssche Summen. Acta Salmanticensia, Ciencias: Sec. Mat. 1954. · Zbl 0057.27305
[7] Lamprecht, E.: Allgemeine Theorie der Gausschen Summen in endlichen kommutativen Ringen. Math. Nachr.9, 150-196 (1953). · Zbl 0050.04401
[8] Lang, S.: Algebraic number theory. Reading, Mass: Addison-Wesley 1970 · Zbl 0211.38404
[9] Serre, J.-P.: Corps Locaux (deuxième édition). Paris: Hermann 1968.
[10] Serre, J.-P.: Représentations Linéaires des Groupes Finis. Paris: Hermann 1967.
[11] Serre, J.-P.: Conducteurs d’Artin des caractères réels. Inventiones math.14, 173-183 (1971). · Zbl 0229.13006
[12] Weil, A.: Dirichlet series and automorphic forms. Lecture Notes in Mathematics189, Berlin-Heidelberg-New York: Springer 1971. · Zbl 0218.10046
[13] Weil, A.: Numbers of solutions of equations in finite fields. Bull. Amer. Math. Soc.55, 497-508 (1949). · Zbl 0032.39402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.