×

Paley-Wiener type theorems for a differential operator connected with symmetric spaces. (English) Zbl 0233.42012


MSC:

42C15 General harmonic expansions, frames
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Araki, S., On root systems and an infinitesimal classification of irreducible symmetric spaces.J. Math. Osaka City Univ. 13 (1962), 1–34. · Zbl 0123.03002
[2] Askey, R., andFitch, J., Integral representatious for Jacobi polynomials and some applications,J. Math. Anal. Appl. 26 (1969), 411–437. · Zbl 0172.08803
[3] Coddington, E. A. andLevinson, N.,Theory of ordinary differential equations. McGraw-Hill, 1955. · Zbl 0064.33002
[4] Dunford, N., andSchwartz, J. T.,Linear Operators, II. Interscience Publishers, 1963. · Zbl 0128.34803
[5] Dym, H., An introduction to de Brange’s spaces of entire functions with applications to differential equations of the Sturm-Liouville type.Advances in Math. 5 (1970). 395–471. · Zbl 0213.39503
[6] Ehrenpreis, L., andMautner, F. I., Some properties of the Fourier transform on semisimple Lie groups, I.Ann. of Math. 61 (1955), 406–439. · Zbl 0066.35701
[7] Erdéley, A., et al.,Higher transcendental functions (Bateman manuscript project) Vol. I, McGraw Hill, 1953.
[8] Gangolli, R., On the Plancherel formula and the Paley-Wiener theorem for spherical functions on semisimple Lie groups,Ann. of Math. 93 (1971), 150–165. · Zbl 0232.43007
[9] Gasper, G., Banach algebras for Jacobi series and positivity of a kernel. (To appear.) · Zbl 0236.33013
[10] —-, Positivity and the convolution structure for Jacobi series.Ann. of Math., 93 (1971), 112–118. · Zbl 0208.08101
[11] Harish-Chandra, Spherical functions on a semisimple Lie group, I and II.Amer. J. Math. 80 (1958), 241–310, 553–613. · Zbl 0093.12801
[12] —-, Discreet series for semisimple Lie groups II.Acta Math. 116 (1966), 1–111. · Zbl 0199.20102
[13] Helgason, S.,Differential geometry and symmetric spaces. Academic Press, 1962. · Zbl 0111.18101
[14] —-, An analogue of the Paley-Wiener theorem for the Fourier transform on certain symmetric spaces.Math. Ann. 165 (1966), 297–308. · Zbl 0178.17101
[15] —-, A duality for symmetric spaces with applications to group representations,Advances in Math. 5 (1970), 1–154. · Zbl 0209.25403
[16] Hellwig, G.,Differentialoperaloren der mathematischen physik. Springer-Verlag, 1964. · Zbl 0134.08602
[17] Hörmander, L.,Linear parrial differential operators. Springer-Verlag, 1963.
[18] Jörgens, K.,Spectral theory of second order ordinary differential operators. Lecture notes, Aarhus Univ. Denmark 1962/63.
[19] Koornwinder, T., The addition formula for Jacobi polynomials. (To appear.) · Zbl 0406.33006
[20] Muckenhoupt, B. andStein, E. M., Classical expansions and their relation to conjugate harmonic functions.Trans. Amer. Math. Soc. 118 (1965), 17–92. · Zbl 0139.29002
[21] Schwartz, A., The structure of the algebra of Hankel transforms and the algebra of Hankel-Stieltjes transforms.Canad. J. Math. 23 (1971), 236–246. · Zbl 0214.13201
[22] Titchmarsh, E. C.,The theory of functions. Second ed. Oxford University Press, 1939. · Zbl 0022.14602
[23] Trombi, P. C., andVaradarajan, V. S., spherical transforms on semisimple Lie groups.Ann. of Math. 94 (1971), 246–303. · Zbl 0218.43010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.