Modules over a ring of differential operators. Study of the fundamental solutions of equations with constant coefficients. (English. Russian original) Zbl 0233.47031

Funct. Anal. Appl. 5, 89-101 (1971); translation from Funkts. Anal. Prilozh. 5, No. 2, 1-16 (1971).


47F05 General theory of partial differential operators
47E05 General theory of ordinary differential operators
Full Text: DOI


[1] I. M. Gel’fand and G. E. Shilov, Generalized Functions and Operations on Them, Fizmatgiz, Moscow (1959). · Zbl 0091.11102
[2] O. Zariski and P. Samuel, Commutative Algebra [Russian translation], Vol. 2, IL, Moscow (1963). · Zbl 0121.27901
[3] M. F. Atiyah, ”Resolution of singularities and division of distributions,” Comm. Pure Appl. Math., No. 2, 145-150 (1970). · Zbl 0188.19405 · doi:10.1002/cpa.3160230202
[4] I. N. Bernshtein and S. I. Gel’fand, ”The meromorphic behavior of the function P?,” Funkts. Analiz i Ego Prilozhen.,3, No. 1, 84-85 (1969).
[5] L. Hörmander, ”On the singularities of solutions of partial differential equations,” Comm. Pure Appl. Math.,23, No. 3, 329-358 (1970). · Zbl 0193.06603 · doi:10.1002/cpa.3160230307
[6] I. R. Shafarevich, ”Foundations of algebraic geometry,” Usp. Mat. Nauk,24, No. 6, 3-184 (1969). · Zbl 0204.21301
[7] L. Hörmander, Linear Partial Differential Operators [Russian translation], Mir, Moscow (1965).
[8] P. A. Griffiths, ”Report on the variation of the Hodge structure,” Usp. Mat. Nauk,25, No. 3, 175-234 (1970). · Zbl 0219.14009
[9] The International Congress in Amsterdam, Fizmatgiz, Moscow (1961). · Zbl 0096.24101
[10] I. M. Gel’fand and A. A. Kirillov, Dokl. Akad. Nauk SSSR, 167, No. 3, 503-505 (1966).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.