×

A structure theorem for Schwartz spaces. (English) Zbl 0234.46002


MSC:

46A03 General theory of locally convex spaces
46A11 Spaces determined by compactness or summability properties (nuclear spaces, Schwartz spaces, Montel spaces, etc.)
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Goldberg, S.: Unbounded linear operators. New York: McGraw-Hill 1966. · Zbl 0148.12501
[2] Horvath, J.: Topological vector spaces and distributions, Vol. I. Reading, Mass.: Addison-Wesley 1966. · Zbl 0143.15101
[3] Johnson, W. B.: Factoring compact operators, Israel J. Math.9, 337-345 (1971). · Zbl 0236.47045
[4] Köthe, G.: Topologische lineare Räume, 2nd ed. Berlin-Heidelberg-New York: Springer 1966. · Zbl 0137.31301
[5] Lindenstrauss, J., Pe?czynski, A.: Absolutely summing operators in ? p -spaces and their applications. Studia Math.29, 275-326 (1968). · Zbl 0183.40501
[6] Lindenstrauss, J., Rosenthal, H. P.: The ? p -spaces. Israel J. Math.7, 325-349 (1969). · Zbl 0205.12602
[7] Pietsch, A.: Nukleare lokalkonvexe Räume, 2nd ed. Berlin: Akademie-Verlag 1969. · Zbl 0184.14602
[8] Randtke, D. J.: Characterizations of precompact maps, Schwartz spaces and nuclear spaces. Trans. Amer. Math. Soc.165, 87-101 (1972). · Zbl 0209.14405
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.