×

zbMATH — the first resource for mathematics

Cohomology of operator algebras. III: Reduction to normal cohomology. (English) Zbl 0234.46066

MSC:
46L10 General theory of von Neumann algebras
46M20 Methods of algebraic topology in functional analysis (cohomology, sheaf and bundle theory, etc.)
46L05 General theory of \(C^*\)-algebras
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] AKEMANN (C. A.) . - The dual space of an operator algebra , Trans. Amer. math. Soc., t. 126, 1967 , p. 286-302. MR 34 #6549 | Zbl 0157.44603 · Zbl 0157.44603
[2] DAY (M. M.) . - Amenable semi-groups , Illinois J. Math., t. 1, 1957 , p. 509-544. Article | MR 19,1067c | Zbl 0078.29402 · Zbl 0078.29402
[3] DIXMIER (J.) . - Les algèbres d’opérateurs dans l’espace hilbertien . 2e édition. - Paris, Gauthier-Villars, 1969 (Cahiers scientifiques, 25). Zbl 0175.43801 · Zbl 0175.43801
[4] HOCHSCHILD (G. P.) . - On the cohomology groups of an associative algebra , Annals of Math., t. 46, 1945 , p. 58-67. MR 6,114f | Zbl 0063.02029 · Zbl 0063.02029
[5] JOHNSON (B. E.) . - Cohomology in Banach algebras (to appear). · Zbl 0256.18014
[6] KADISON (R. V.) . - Derivations of operator algebras , Annals of Math., t. 83, 1966 , p. 280-293. MR 33 #1747 | Zbl 0139.30503 · Zbl 0139.30503
[7] KADISON (R. V.) and RINGROSE (J. R.) . - Cohomology of operator algebras , I: Type I von Neumann algebras, Acta Math., Uppsala, t. 126, 1971 , p. 227-243. MR 44 #809 | Zbl 0209.44501 · Zbl 0209.44501
[8] KADISON (R. V.) and RINGROSE (J. R.) . - Cohomology of operator algebras , II: Extended cobounding and the hyperfinite case, Arkiv. för Mat., t. 9, 1971 , p. 55-63. MR 47 #7453 | Zbl 0214.38402 · Zbl 0214.38402
[9] TAKESAKI (M.) . - On the conjugate space of an operator algebra , Tôhoku math. J., t. 10, 1958 , p. 194-203. Article | MR 20 #7227 | Zbl 0089.10703 · Zbl 0089.10703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.