Conditional weak compactness in certain inductive tensor products. (English) Zbl 0234.46069


46M05 Tensor products in functional analysis
Full Text: DOI EuDML


[1] Amir, D., Lindenstrauss, J.: The structure of weakly compact sets in Banach spaces. Ann. of Math.88, 35-46 (1968). · Zbl 0164.14903
[2] Bartle, R.G., Dunford, N., Schwartz, J.: Weak compactness and vector measures. Canadian J. Math.7, 289-305 (1955). · Zbl 0068.09301
[3] Bogdanowicz, W.M.: Representations of linear functionals on the spaceC (X, Y) of continuous functions from compactX into locally convexY. Proc. Japan Acad.42, 1122-1127 (1967). · Zbl 0154.39501
[4] Dunford, N., Schwartz, J.: Linear Operators. Part I. General Theory. 1st edition, New York: Interscience 1958. · Zbl 0084.10402
[5] Gil de Lamadrid, J.: Measures and Tensors II. Canadian J. Math.18, 762-793 (1966). · Zbl 0217.44703
[6] Grothendieck, A.: Sur les applications lineaires faiblement compactes d’espaces du type C (K). Canadian J. Math.5, 129-173 (1953). · Zbl 0050.10902
[7] Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc.16, 1-80 (1955).
[8] Holub, J.: Hilbertian operators and reflexive tensor products. Pacific J. Math.36, 185-194 (1971). · Zbl 0212.15601
[9] Pettis, B. J.: On integration in vector spaces. Trans. Amer. Math. Soc.44, 277-304 (1938). · Zbl 0019.41603
[10] Rosenthal, H. P.: On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators formL p (?) toL r (v). J. Functional Analysis4, 176-214 (1969). · Zbl 0185.20303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.