×

zbMATH — the first resource for mathematics

Several approaches to pulse-width-modulated regular synthesis via quasilinearization. (English) Zbl 0234.49022
MSC:
49N25 Impulsive optimal control problems
PDF BibTeX XML Cite
References:
[1] R. E. Bellman R. E. Kalaba: Quasilinearization and nonlinear boundary-value problems. Amer. Elsevier, N.Y. 1965. · Zbl 0139.10702
[2] O. A. Solheim F. Pøhner: Optimal control of a class of discrete systems. Preprints IFAC Congr., Warshaw, June 1969, Tech. session 62, 34-51.
[3] A. Vaněček: Convergence of quasilinear approximations of dynamical systems. (In Czech.) INORGA Institute for Automation Rep., Prague, June 1971.
[4] A. Vaněček J. Fessl: A contribution to parameters and state estimation and synthesis via quasilinearization. Preprints 2nd Prague IFAC Symp. Identification and Process Parameter Estimation, 15-20 June 1970. Sec. 2.6, 1-7. Academia, Prague 1970.
[5] A. Vaněček J. Fessl M. Šindelář: Optimization of digital control using pulse-width-modulation. (In Czech.) INORGA Institute for Automation Rep., Prague, Dec. 1970.
[6] P. Vidal: Systèmes échantillonnés non linéaires. Gordon & Breach (Dunod, Paris 1968. · Zbl 0214.16002
[7] С. Н. Зуховицкий Л. И. Авдєєва: Линєйноє и выпуклоє программированиє. Hayka, Москва 1964.
[8] J. Žáčková: On maximizing a concave function subject to linear constraints by Newton’s method. Aplikace matematiky 13 (1968), 4, 339-335. · Zbl 0212.18202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.