×

On the Bianchi identities. (English) Zbl 0234.53021


MSC:

53B05 Linear and affine connections
53B20 Local Riemannian geometry
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Eisenhart, L. P.: Riemannian Geometry. Princeton: University Press 1949. · Zbl 0041.29403
[2] Garland, H., Raghunathan, M. S.: Fundamental domains for lattices. Ann. of Math.92, 279-326 (1970). · Zbl 0206.03603
[3] Gray, A.: Some relations between curvature and characteristic classes. Math. Ann.184, 267-267 (1970). · Zbl 0183.50502
[4] Herglotz, G.: Zur Einsteinschen Gravitätstheorie. Leipz. Ber. t.68, 199-203 (1916).
[5] Kulkarni, R. S.: Curvature and metric. Ann. of. Math.91, 311-331 (1970). · Zbl 0191.19903
[6] Kulkarni, R. S.: Curvature structures and conformal transformations. J. Diff. Geometry, Vol. 4, 425-451. · Zbl 0206.24403
[7] Kulkarni, R. S.: On a theorem of F. Schur. J. Diff. Geometry, Vol. 4, 453-456. · Zbl 0206.24404
[8] Kulkarni, R. S.: On congruence of hypersurfaces (to appear). · Zbl 0271.53052
[9] Mostow, G. D.: Quasiconformal mappings inn-space and the rigidity of hyperbolic space forms. Inst. Hautes Etudes Sc. Publ. Mth.34, 53-104 (1968). · Zbl 0189.09402
[10] Nomizu, K.: On the decomposition of generalized curvature tensor fields (to appear). · Zbl 0244.53032
[11] Nomizu, K.: On the spaces of generalized curvature tensor fields (to appear). · Zbl 0218.53064
[12] Obata, M.: The conjectures on conformal transformations (to appear). · Zbl 0208.49903
[13] Rham, G. de: Complexes √† automorphismes et homeomorphie differentiables. Ann. Inst. Fourier Grenoble2, 51-67 (1950). · Zbl 0043.17601
[14] Thorpe, J. A.: Sectional curvatures and characteristic classes. Ann. of Math.80, 429-443 (1964). · Zbl 0134.17702
[15] Thorpe, J. A., Singer, I. M.: The curvature of 4-dimensional Einstein spaces. Global Analysis Papers in Honor of K. Kodaira, pp. 355-365.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.