×

zbMATH — the first resource for mathematics

Galerkin methods for parabolic equations with nonlinear boundary conditions. (English) Zbl 0234.65096

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35K55 Nonlinear parabolic equations
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Babu?ka, I.: A remark to the finite element method. Commentationes Mathematicae Universitatis Carolinae12, 367-376 (1971). · Zbl 0243.65069
[2] Birkhoff, G., Schultz, M. H., Varga, R. S.: Piecewise Hermite interpolation in one and two variables with applications to partial differential equations. Numer. Math.11, 232-256 (1968). · Zbl 0159.20904
[3] Bramble, J. H., Hilbert, S. R.: Bounds for a class of linear functionals with applications to Hermite interpolation. Numer. Math.16, 362-369 (1971). · Zbl 0214.41405
[4] Bramble, J. H., Schatz, A. H.: Rayleigh-Ritz-Galerkin methods for Dirichlet’s problem using subspaces without boundary conditions. Comm. Pure and Appl. Math.23, 653-675 (1970). · Zbl 0204.11102
[5] Bramble, J. H., Zl?mal, M.: Triangular elements in the finite element method. Math. Comp.24, 809-820 (1970).
[6] Fix, G., Strang, G.: An analysis of the finite element method. Prentice-Hall, to appear. · Zbl 0356.65096
[7] Lions, J. L., Magenes, E.: Probl?mes aux limites non homog?nes et applications. Paris: Dunod 1968. · Zbl 0165.10801
[8] Nitsche, J.: Ein Kriterium f?r die Quasi-Optimalit?t des Ritzschen Verfahrens. Numer. Math.11, 346-348 (1968). · Zbl 0175.45801
[9] Nitsche, J.: Lineare Spline-Funktionen und die Methoden von Ritz f?r elliptische Randwertprobleme. Archive for Rational Mechanics and Analysis36, 348-355 (1970). · Zbl 0192.44503
[10] Wheeler, M. F.: Thesis, Rice University, 1971.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.