×

Polars and their applications in directed interpolation groups. (English) Zbl 0235.06004


MSC:

06F15 Ordered groups
Full Text: DOI

References:

[1] B. Banaschewski, On lattice-ordered groups, Fund. Math. 55 (1964), 113 – 122. · Zbl 0129.01803
[2] R. D. Byrd, Lattice-ordered groups, Ph.D. Dissertation, Tulane University, New Orleans, La., 1966. · Zbl 0182.04801
[3] Richard D. Byrd, \?-polars in lattice-ordered groups, Czechoslovak Math. J. 18 (93) (1968), 230 – 239 (English, with Loose Russian summary). · Zbl 0174.06004
[4] Richard D. Byrd, Paul Conrad, and Justin T. Lloyd, Characteristic subgroups of lattice-ordered groups, Trans. Amer. Math. Soc. 158 (1971), 339 – 371. · Zbl 0235.06006
[5] A. H. Clifford, A noncommutative ordinally simple linearly ordered group, Proc. Amer. Math. Soc. 2 (1952), 902 – 903. · Zbl 0044.01301
[6] Paul F. Conrad, Embedding theorems for abelian groups with valuations, Amer. J. Math. 75 (1953), 1 – 29. · Zbl 0050.02303 · doi:10.2307/2372611
[7] Paul Conrad, John Harvey, and Charles Holland, The Hahn embedding theorem for abelian lattice-ordered groups, Trans. Amer. Math. Soc. 108 (1963), 143 – 169. · Zbl 0126.05002
[8] L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto, Calif.-London, 1963. · Zbl 0137.02001
[9] L. Fuchs, Riesz groups, Ann. Scuola Norm. Sup. Pisa (3) 19 (1965), 1 – 34. · Zbl 0125.28703
[10] A. M. W. Glass, Which abelian groups can support a directed, interpolation order?, Proc. Amer. Math. Soc. 31 (1972), 395 – 400. · Zbl 0235.06009
[11] -, The lattice of convex directed subgroups of a directed, interpolation group (unpublished paper(\( ^{1}\))).
[12] P. Hall, On the finiteness of certain soluble groups, Proc. London Math. Soc. (3) 9 (1959), 595 – 622. · Zbl 0091.02501 · doi:10.1112/plms/s3-9.4.595
[13] Charles Holland, The lattice-ordered groups of automorphisms of an ordered set, Michigan Math. J. 10 (1963), 399 – 408. · Zbl 0116.02102
[14] Paul Jaffard, Sur le spectre d’un groupe réticulé et l’unicité des réalisations irréductibles, Ann. Univ. Lyon. Sect. A (3) 22 (1959), 43 – 47 (French). · Zbl 0103.01601
[15] P. Lorenzen, Abstrakte Begründung der multiplikativen Idealtheorie, Math. Z. 45 (1939), 533 – 553 (German). · JFM 65.0101.01 · doi:10.1007/BF01580299
[16] D. Papert, A representation theory for lattice-groups, Proc. London Math. Soc. (3) 12 (1962), 100 – 120. · Zbl 0152.01401 · doi:10.1112/plms/s3-12.1.100
[17] J. Roger Teller, A theorem on Riesz groups, Trans. Amer. Math. Soc. 130 (1968), 254 – 264. · Zbl 0155.06002
[18] Elliot Carl Weinberg, Embedding in a divisible lattice-ordered group, J. London Math. Soc. 42 (1967), 504 – 506. · Zbl 0157.36802 · doi:10.1112/jlms/s1-42.1.504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.