×

Opérateurs pseudo-différentiels analytiques et opérateurs d’ordre infini. (Analytic pseudo-differential operators and operators of infinite order.). (French) Zbl 0235.47029


MSC:

47G30 Pseudodifferential operators
47G10 Integral operators
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] L. BOUTET de MONVEL et P. KREE, Pseudo-differential operators and Gevrey classes, Ann. Inst. Fourier, Grenoble 17, 1 (1967), 295-323. · Zbl 0195.14403
[2] L. CARLESON, On universal moments problems, Math. Scand. 9 (1961) 197-206. · Zbl 0114.05903
[3] L. HÖRMANDER, Pseudo-differential operators and hypoelliptic equations, Amer. Math. Soc. Proc. Symp. Pure Appl. Math. 10 (1968) 138-183. · Zbl 0167.09603
[4] L. HÖRMANDER, The spectral function of an elliptic operator, Acta Math. 121 (1968) 193-218. · Zbl 0164.13201
[5] L. HÖRMANDER, Fourier integral operators, Acta Math. 127 (1971) 79-183. · Zbl 0212.46601
[6] J.J. KOHN et L. NIRENBERG, An algebra of pseudo-differential operators, Comm. Pure Appl. Math. 18 (1965) 269-305. · Zbl 0171.35101
[7] A. MARTINEAU, LES hyperfonctions de M. Sato, Séminaire Bourbaki 214 (1960/1961). · Zbl 0122.34902
[8] A. MARTINEAU, Equations différentielles d’ordre infini, Bull. Soc. Math. France 95 (1967) 109-154. · Zbl 0167.44202
[9] M. SATO, Theory of hyperfunctions I et II, J. Fac. Sc. Univ. Tokyo 8 (1959-1960), 139-193 et 387-437. · Zbl 0087.31402
[10] P. SCHAPIRA, Théorie des hyperfonctions, Lecture Notes in Mathematics 126, Springer-Verlag (1970). · Zbl 0192.47305
[11] F. TREVES, Hyper-differential operators in complex space, Bull. Soc. Math. France 97 (1969) 193-223. · Zbl 0219.58009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.