×

zbMATH — the first resource for mathematics

Multiplicative perturbation of nonlinear m-accretive operators. (English) Zbl 0236.47048

MSC:
47H05 Monotone operators and generalizations
47J05 Equations involving nonlinear operators (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Brezis, H; Pazy, A, Semigroups of nonlinear contractions on convex sets, J. functional analysis, 6, 237-281, (1970) · Zbl 0209.45503
[2] Brezis, H; Crandall, M; Pazy, A, Perturbations of nonlinear maximal monotone sets in Banach space, Comm. pure appl. math., 23, 123-144, (1970) · Zbl 0182.47501
[3] Browder, F.E, Nonlinear maximal monotone operators in Banach spaces, Math. ann., 175, 89-113, (1968) · Zbl 0159.43901
[4] {\scF. E. Browder}, “Nonlinear Operators and Nonlinear Equations of Evolution in Banach Spaces,” Proc. Symp. Pure Math., No. 18, Part II, Amer. Math. Soc., Providence, RI, to appear. · Zbl 0176.45301
[5] Browder, F.E; de Figueiredo, D.G; Gupta, C.P, Maximal monotone operators and nonlinear integral equations of Hammerstein type, Bull. amer. math. soc., 76, 700-705, (1970) · Zbl 0197.41101
[6] Calvert, B, Nonlinear evolution equations in Banach lattices, Bull. amer. math. soc., 76, 845-850, (1970) · Zbl 0207.45603
[7] {\scB. Calvert}, Nonlinear equations of evolution, Pacific J. Math., to appear. · Zbl 0251.34041
[8] {\scM. G. Crandall and T. M. Liggett}, Generation of semigroups of nonlinear transformations on general Banach spaces, Amer. J. Math., to appear. · Zbl 0226.47038
[9] Crandal, M.G; Pazy, A, Semigroups of nonlinear contractions and dissipative sets, J. functional analysis, 3, 376-418, (1969) · Zbl 0182.18903
[10] Dorroh, J.R, Contraction semigroups in a function space, Pacific J. math., 19, 35-38, (1966) · Zbl 0143.16504
[11] Dorroh, J.R, A nonlinear Hille-Yosida-Phillips theorem, J. functional analysis, 3, 345-353, (1969) · Zbl 0174.45602
[12] Dorroh, J.R, A class of nonlinear evolution equations in a Banach space, Trans. amer. math. soc., 147, 65-74, (1970) · Zbl 0191.43301
[13] Gustafson, K, A perturbation lemma, Bull. amer. math. soc., 72, 334-338, (1966) · Zbl 0148.38204
[14] Gustafson, K, A note on left multiplication of semigroup generators, Pac. J. math., 24, 463-465, (1968) · Zbl 0157.21405
[15] Gustafson, K, Positive (noncommuting) operator products and semigroups, Math. Z., 105, 160-172, (1968) · Zbl 0159.43403
[16] Gustafson, K, Doubling perturbation sizes and preservation of operator indices in normed linear spaces, (), 281-294 · Zbl 0181.13801
[17] Gustafson, K, The angle of an operator and positive operator products, Bull. amer. math. soc., 74, 488-492, (1968) · Zbl 0172.40702
[18] Gustafson, K; Sato, Ken-iti, Some perturbation theorems for nonnegative contraction semigroups, J. math. soc. Japan, 21, 200-204, (1969) · Zbl 0182.17502
[19] {\scK. Gustafson and G. Lumer}, Multiplicative perturbation of semigroup generators, Pacific J. Math., to appear. · Zbl 0228.47028
[20] Hille, E; Phillips, R.S, Functional analysis and semigroups, (), Providence, RI
[21] Kato, T, Nonlinear semi-groups and evolution equations, J. math. soc. Japan, 19, 508-520, (1967) · Zbl 0163.38303
[22] Kato, T, Demicontinuity, hemicontinuity, and monotonicity, II, Bull. amer. math. soc., 73, 886-889, (1967) · Zbl 0184.36504
[23] Kato, T, Accretive operators and nonlinear evolution equations in Banach spaces, (), 138-161, Part I
[24] Kato, T, Perturbation theory for linear operators, (1966), Springer-Verlag Berlin · Zbl 0148.12601
[25] Komura, Y, Nonlinear semi-groups in Hilbert space, J. math. soc. Japan, 19, 493-507, (1967) · Zbl 0163.38302
[26] Komura, Y, Differentiability of nonlinear semi-groups, J. math. soc. Japan, 21, 375-402, (1969) · Zbl 0193.11004
[27] Lumer, G; Phillips, R.S, Dissipative operators in a Banach space, Pacific J. math., 11, 679-698, (1961) · Zbl 0101.09503
[28] Mermin, J, Accretive operators and nonlinear semigroups, ()
[29] Minty, E.J, Monotone (nonlinear) operators in Hilbert space, Duke math. J., 29, 341-346, (1962) · Zbl 0111.31202
[30] Nelson, E, Feynman integrals and the Schrödinger equation, J. math. phys., 5, 332-343, (1964) · Zbl 0133.22905
[31] Phillips, R.S, Perturbation theory for semi-groups of linear operators, Trans. amer. math. soc., 74, 199-221, (1953) · Zbl 0053.08704
[32] Rockafellar, R.T, Local boundedness of nonlinear, monotone operators, Michigan math. J., 16, 397-407, (1969) · Zbl 0175.45002
[33] Rockafellar, R.T, On the maximality of sums of nonlinear monotone operators, Trans. amer. math. soc., 149, 75-88, (1970) · Zbl 0222.47017
[34] Trotter, H, On the product of semigroups of operators, (), 545-551 · Zbl 0099.10401
[35] Webb, G.F, Nonlinear evolution equations and product integration in Banach spaces, Trans. amer. math. soc., 148, 273-282, (1970) · Zbl 0199.20703
[36] Widger, C, ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.