zbMATH — the first resource for mathematics

On the isomorphic imbedding of locally nilpotent groups in locally finite algebras. (English. Russian original) Zbl 0237.20029
Sib. Math. J. 12, 165-168 (1971); translation from Sib. Mat. Zh. 12, 226-231 (1971).

20E25 Local properties of groups
Full Text: DOI
[1] A. I. Mal’tsev, ?On the isomorphic representation of infinite groups by matrices,? Matem. Sb.,8, No. 3, 405-422 (1940).
[2] A. I. Mal’tsev, ?On a class of homogeneous spaces,? Izv. AN SSSR, Ser. Mat.,13, No. 1, 9-32 (1949).
[3] S. A. Jennings, ?The group ring of a class of infinite nilpotent groups,? Canad. J. Math.,7, No. 2, 169-187 (1965). · Zbl 0066.01302
[4] G. Birkhoff, ?Representations of Lie algebras and Lie groups by matrices,? Ann. Math.,38, 526-532 (1937). · Zbl 0016.24402
[5] A. Learner, ?The embedding of a class of polycyclic groups,? Proc. London Math. Soc.,12, No. 47, 496-510 (1962). · Zbl 0107.02001
[6] R. C. Swan, ?Representations of polycyclic groups,? Proc. Amer. Math. Soc., No. 5, 185-186 (1967). · Zbl 0153.03801
[7] P. Hall, ?On the finiteness of certain solvable groups,? Proc. London Math. Soc.,5, No. 9, 595-622 (1959). · Zbl 0091.02501
[8] S. Amitsur, ?Groups with representations of bounded degree,? Illinois J. Math.,5, No. 2, 198-205 (1961). · Zbl 0100.25704
[9] V. G. Vilyatser, ?Stable groups of automorphisms,? Dokl. Akad. Nauk SSSR,131, No. 4, 728-730 (1960).
[10] B. I. Plotkin, Groups of Automorphisms of Algebraic, Systems [in Russian], Fizmatgiz, Moscow (1966).
[11] M. P. Sedneva, ?Some questions of infinite linear groups,? Izv. Akad. Nauk Latv. SSR, Ser. Fiz.-Tekh., No. 6, 59-62 (1965).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.